首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
2.
J. H. Toyn  L. H. Johnston 《Genetics》1993,135(4):963-971
The DBF2 and DBF20 genes of the budding yeast Saccharomyces cerevisiae encode a pair of structurally similar protein kinases. Although yeast with either gene deleted is viable, deletion of both genes is lethal. Thus, the Dbf2 and Dbf20 proteins are functional alternatives for an essential activity. In contrast to deletions, four different mutant alleles of DBF2 are lethal. Thus, the presence of a nonfunctional Dbf2 protein, rather than the lack of function per se, is inhibitory. Here we present genetic evidence that nonfunctional mutant Dbf2 protein blocks the function of Dbf20 protein by sequestering a common interacting protein encoded by SPO12. Even a single extra copy of SPO12 is sufficient to suppress the dbf2 defect. Since SPO12 appears to encode a limiting factor, it may be a rate limiting cofactor that is involved in the regulation of the Dbf2 and Dbf20 protein kinases. A corollary to the finding that one extra copy of SPO12 can suppress dbf2, is that the acquisition of an extra chromosome VIII, which carries the SPO12 locus, will also suppress dbf2. Indeed, physical analysis of chromosome copy number in dbf2 revertants able to grow at 37° showed that the frequency of chromosome VIII acquisition increased when cells were incubated at the restrictive temperature, and reached a frequency of more than 100-fold the amount in wild-type yeast. This suggested that the dbf2 mutation was not only suppressed by an extra copy of chromosome VIII but also that the dbf2 mutation actually caused aberrant chromosomal segregation. Conventional assays for chromosome loss confirmed this proposal.  相似文献   

3.
To help clarify the role of DBF2, a previously described cell cycle protein kinase, high copy number suppressors of the dbf2 mutation were isolated. Three open reading frames (ORF) have been identified. One ORF encodes a protein which has homology to a human small nuclear riboprotein, while the remaining two are genes which have been identified previously, SIT4 and SPO12. SIT4 is known to have a role in the cell cycle but the nature of the interaction between SIT4 and dbf2 is unclear. SPO12 has until now been implicated exclusively in meiosis. However, we show that SPO12 is expressed during vegetative growth, moreover it is expressed under cell cycle control coordinately with DBF2. SPO12 is a nonessential gene, but it becomes essential in a DBF2 delete genetic background. Furthermore, detailed analysis of the cell cycle of SPO12 delete cells revealed a small but significant delay in mitosis. Therefore, SPO12 does have a role during vegetative growth and it probably functions in mitosis in association with DBF2.  相似文献   

4.
5.
6.
7.
When present on a multicopy plasmid, a gene from a Saccharomyces cerevisiae genomic library suppresses the temperature-sensitive cdc7-1 mutation. The gene was identified as DBF4, which was previously isolated by complementation in dbf4-1 mutant cells and is required for the G1----S phase progression of the cell cycle. DBF4 has an open reading frame encoding 695 amino acid residues and the predicted molecular mass of the gene product is 80 kD. The suppression is allele-specific because a CDC7 deletion is not suppressed by DBF4. Suppression is mitosis-specific and the sporulation defect of cdc7 mutations is not suppressed by DBF4. Conversely, CDC7 on a multicopy plasmid suppresses the dbf4-1, -2, -3 and -4 mutations but not dbf4-5 and DBF4 deletion mutations. Furthermore, cdc7 mutations are incompatible with the temperature-sensitive dbf4 mutations. These results suggest that the CDC7 and DBF4 polypeptides interact directly or indirectly to permit initiation of yeast chromosome replication.  相似文献   

8.
The product of the cdc2 gene encodes the p34cdc2 protein kinase that controls entry of yeast cells into S phase and mitosis. In higher eukaryotes, at least two cdc2 -like genes appear to be involved in these processes. A cdc2 homologous gene has previously been isolated from alfalfa and shown to complement a fission yeast cdc2 ts mutant. Here the isolation of cdc2MsB , a cognate cdc2 gene from alfalfa ( Medicago sativa ) is reported. Southern blot analysis shows that cdc2MsA and cdc2MsB are present as single copy genes in different tetraploid Medicago species. cdc2MsB encodes a slightly larger mRNA (1.5 kb) than cdc2MsA (1.4 kb). Both genes were found to be expressed at similar steady state levels in different alfalfa organs. Expression levels of both cdc2Ms genes correlate with the proliferative state of the organs. Complementation studies revealed that in contrast to cdc2MsA, cdc2MsB was not able to rescue a cdc2 ts fission yeast mutant. cdc2MsB was also unable to rescue a G2/M-arrested cdc28 ts budding yeast mutant which could be rescued by expression of the cdc2MsA gene. Conversely, cdc2MsB but not cdc2MsA was found to complement the G1/S block of another cdc28 ts budding yeast mutant. These results suggest that cdc2MsA and cdc2MsB function at different control points in the cell cycle.  相似文献   

9.
10.
Guo B  Lee H 《Gene》2001,264(2):249-256
The Dbf4 protein is the regulatory subunit of Cdc7 serine/threonine kinase, which is essential for entry into S phase. We report here the cloning and initial characterization of the Chinese hamster homologue of yeast DBF4. The deduced ChDbf4 protein contains 676 amino acids with a predicted molecular mass of 75.8 kDa, and shares extensive identity overall with those of human (68%) and mouse (73%). The ChDBF4 mRNA level was barely detectable in the cells arrested in the quiescent stage (G(0)) by isoleucine starvation. When cells in G(0) were released into the cell cycle, the ChDBF4 mRNA level did not significantly change until the cells reached the G(1)/S boundary, when the level rapidly increased and reached approximately 70% of the maximum level that was observed in mid to late S phase. Interestingly, gamma-irradiation rapidly and transiently downregulated the level of ChDBF4 mRNA in asynchronous cell populations. Since Dbf4-Cdc7 kinase is involved in the regulation of replication initiation, which can be transiently downregulated by irradiation (Larner et al., 1994. Mol. Cell. Biol. 14, 1901, our data raise the possibility that the downregulation of DBF4 (and, thus, the Cdc7 kinase activity) by irradiation may play a role in the cell-cycle checkpoint that functions at the G(1)/S transition and in S phase (Lee et al., 1997. Proc. Natl. Acad. Sci. USA 94, 526).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号