首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and function of mammalian cilia   总被引:3,自引:1,他引:2  
In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease.  相似文献   

2.
Summary Scanning electron microscopy of various regions of the body of the marine gastropod Pleurobranchaea californica (McFarland) has revealed a characteristic cell type that bears cilia with dilated discoid-shaped tips. The tips of the cilia consist of an expansion of the ciliary membrane around a looped distal extension of the axoneme. These kinocilia have been observed in numerous other marine invertebrates and are generally referred to as paddle cilia (Tamarin et al. 1974) or discocilia (Heimler 1978). Although many functions have been proposed for paddle cilia, little empirical evidence supports any of the proposals. In Pleurobranchaea we have found that the distribution of this ciliated cell type corresponds exactly to areas of the body known from behavioral studies (Lee et al. 1974; Davis and Matera 1981) to mediate chemoreception. Transmission electron microscopy of the epithelium lining the rhinophores and tentacles of Pleurobranchaea revealed details of the ultrastructure of these ciliated cells and showed that they are primary receptors. These ciliated receptors lie in a yellow-brown pseudostratified columnar epithelium that superficially resembles the olfactory mucosa of vertebrates.  相似文献   

3.
Primary cilia are distinct organelles expressed by many vertebrate cells, including cholangiocytes; however, their functions remain obscure. To begin to explore the physiological role of these organelles in the liver, we described the morphology and structure of cholangiocyte cilia and developed new approaches for their isolation. Primary cilia were present only in bile ducts and were not observed in hepatocytes or in hepatic arterial or portal venous endothelial cells. Each cholangiocyte possesses a single cilium that extends from the apical membrane into the bile duct lumen. In addition, the length of the cilia was proportional to the bile duct diameter. We reproducibly isolated enriched fractions of cilia from normal rat and mouse cholangiocytes by two different approaches as assessed by scanning electron, transmission electron, and confocal microscopy. The purity of isolated ciliary fractions was further analyzed by Western blot analysis using acetylated tubulin as a ciliary marker and P2Y(2) as a nonciliary cell membrane marker. These novel techniques produced enriched ciliary fractions of sufficient purity and quantity for light and electron microscopy and for biochemical analyses. They will permit further assessment of the role of primary cilia in normal and pathological conditions.  相似文献   

4.
In order to clarify contradictory reports concerning ciliary structure and function, follicular epithelium from macroscopically normal portions of 37 surgical specimens of human thyroid were processed for video-microscopy and/or transmission electron microscopy. The cilia of living cells were immotile. In transverse sections the cilia revealed a 9 + 0 pattern at the base of the shaft, whereas towards the distal end the number of microtubular doublets diminished. Dynein arms, radial spokes and central microtubules were absent. The immotility and structure of these primary cilia implies that their function is not related to motility. The phylogenetic and ontogenetic development of the thyroid suggests that tumor cells of follicular origin displaying abnormal secondary cilia may represent a pathological variant of differentiation.  相似文献   

5.
We have examined the subcellular localization of transient receptor potential (TRP) ion channels and the potential sensory role of cilia in murine female reproductive organs using confocal laser scanning microscopy analysis on ovary and oviduct tissue sections as well as on primary cultures of follicular granulosa cells. We show that the Ca2+ permeable cation channel, polycystin-2, as well as polycystin-1, a receptor that forms a functional protein complex with polycystin 2, distinctively localize to primary cilia emerging from granulosa cells of antral follicles in vivo and in vitro. Both polycystins are localized to motile oviduct cilia and this localization is greatly increased upon ovulatory gonadotropic stimulation. Further, the Ca2+ permeable cation channel, TRP vaniloid 4 (TRPV4), localizes to a sub-population of motile cilia on the epithelial cells of the ampulla and isthmus with high intensity in proximal invaginations of the epithelial folds. These observations are the first to demonstrate ciliary localization of TRP ion channels and their possible receptor function in the female reproductive organs. We suggest that polycystins 1 and 2 play an important role in granulosa cell differentiation and in development and maturation of ovarian follicles. In the oviduct both TRPV4 and polycystins could be important in relaying physiochemical changes in the oviduct upon ovulation.  相似文献   

6.
Primary cilia are sensory, antennae‐like organelles present on the surface of many cell types. They have been involved in a variety of diseases collectively termed ciliopathies. As cilia are essential regulators of cell signaling, the composition of the ciliary membrane needs to be strictly regulated. To understand regulatory processes at the ciliary membrane, we report the targeting of a genetically engineered enzyme specifically to the ciliary membrane to allow biotinylation and identification of the membrane‐associated proteome. Bioinformatic analysis of the comprehensive dataset reveals high‐stoichiometric presence of actin‐binding proteins inside the cilium. Immunofluorescence stainings and complementary interaction proteomic analyses confirm these findings. Depolymerization of branched F‐actin causes further enrichment of the actin‐binding and actin‐related proteins in cilia, including Myosin 5a (Myo5a). Interestingly, Myo5a knockout decreases ciliation while enhanced levels of Myo5a are observed in cilia upon induction of ciliary disassembly. In summary, we present a novel approach to investigate dynamics of the ciliary membrane proteome in mammalian cells and identify actin‐binding proteins as mechanosensitive components of cilia that might have important functions in cilia membrane dynamics.  相似文献   

7.
NDP kinase moves into developing primary cilia   总被引:1,自引:0,他引:1  
Inmunofluorescence staining of murine NIH3T3 fibroblasts grown at high density shows that conventional nucleoside diphosphate (NDP) kinases A and B localize to a sensory organelle, the primary cilium. Similar results are obtained with Xenopus A6 kidney epithelial cells, suggesting that NDP kinases are a universal component of the primary cilium. The translocation of NDP kinase into primary cilia depends on size, taking place only when cilia reach a critical length of 5-6 microm. In mature cilia, NDP kinases are distributed along the ciliary shaft in a punctate pattern that is distinct from the continuous staining observed with acetylated alpha-tubulin, a ciliary marker and axonemal component. Isolation of a fraction enriched in primary cilia from A6 cells led to the finding that ciliary NDP kinase is enzymatically active, and is associated with the membrane and the matrix, but not the axoneme. In contrast, acetylated alpha-tubulin is found in the axoneme and, to a lesser extent, in the membrane. Based on the tightly regulated translocation process and the subciliary distribution pattern of NDP kinase, we propose that it plays a role in the elongation and maintenance of primary cilia by its ability to regenerate the GTP utilized by ciliary microtubule turnover and transmembrane signaling.  相似文献   

8.
Primary cilia are specialized microtubule‐based signaling organelles that convey extracellular signals into a cellular response in most vertebrate cell types. The physiological significance of primary cilia is underscored by the fact that defects in assembly or function of these organelles lead to a range of severe diseases and developmental disorders. In most cell types of the human body, signaling by primary cilia involves different G protein‐coupled receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate diverse cellular and physiological events. Here, we provide an overview of GPCR signaling in primary cilia, with main focus on the rhodopsin‐like (class A) and the smoothened/frizzled (class F) GPCRs. We describe how such receptors dynamically traffic into and out of the ciliary compartment and how they interact with other classes of ciliary GPCRs, such as class B receptors, to control ciliary function and various physiological and behavioral processes. Finally, we discuss future avenues for developing GPCR‐targeted drug strategies for the treatment of ciliopathies.  相似文献   

9.
The cilia of mammalian olfactory receptor neurons (ORNs) represent the sensory interface that is exposed to the air within the nasal cavity. The cilia are the site where odorants bind to specific receptors and initiate olfactory transduction that leads to excitation of the neuron. This process involves a multitude of ciliary proteins that mediate chemoelectrical transduction, amplification, and adaptation of the primary sensory signal. Many of these proteins were initially identified by their enzymatic activities using a membrane protein preparation from olfactory cilia. This so-called "calcium-shock" preparation is a versatile tool for the exploration of protein expression, enzyme kinetics, regulatory mechanisms, and ciliary development. To support such studies, we present a first proteomic analysis of this membrane preparation. We subjected the cilia preparation to liquid chromatography-electrospray ionisation (LC-ESI-MS/MS) tandem mass spectrometry and identified 268 proteins, of which 49% are membrane proteins. A detailed analysis of their cellular and subcellular localization showed that the cilia preparation obtained by calcium shock not only is highly enriched in ORN proteins but also contains a significant amount of nonciliary material. Although our proteomic study does not identify the entire set of ciliary and nonciliary proteins, it provides the first estimate of the purity of the calcium-shock preparation and provides valuable biochemical information for further research.  相似文献   

10.
11.
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca2+ for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC‐ESI‐MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.  相似文献   

12.
13.
Most mammalian cell types have the potential to assemble at least one cilium. Immotile cilia participate in numerous sensing processes, while motile cilia are involved in cell motility and movement of extracellular fluid. The functional importance of cilia and flagella is highlighted by the growing list of diseases due to cilia defects. These ciliopathies are marked by an amazing diversity of clinical manifestations and an often complex genetic aetiology. To understand these pathologies, a precise comprehension of the biology of cilia and flagella is required. These organelles are remarkably well conserved throughout eukaryotic evolution. In this review, we describe the strengths of various model organisms to decipher diverse aspects of cilia and flagella biology: molecular composition, mode of assembly, sensing and motility mechanisms and functions. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, Caenorhabditis elegans or Drosophila, and protists such as Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.  相似文献   

14.
Cilia and flagella are closely related centriole-nucleated protrusions of the cell with roles in motility and signal transduction. Two of the best-studied signalling pathways organized by cilia are the transduction cascade for the morphogen Hedgehog in vertebrates and the mating pathway that initiates gamete fusion in the unicellular green alga Chlamydomonas reinhardtii. What is the role of cilia in these signalling transduction cascades? In both Hedgehog and mating pathways, all signalling intermediates have been found to localize to cilia, and, for some signalling factors, ciliary localization is regulated by pathway activation. Given a concentration factor of three orders of magnitude provided by translocating a protein into the cilium, the compartment model proposes that cilia act as miniaturized reaction tubes bringing signalling factors and processing enzymes in close proximity. On the other hand, the scaffolding model views the intraflagellar transport machinery, whose primary function is to build cilia and flagella, as a molecular scaffold for the mating transduction cascade at the flagellar membrane. While these models may coexist, it is hoped that a precise understanding of the mechanisms that govern signalling inside cilia will provide a satisfying answer to the question ‘how do cilia organize signalling?’. This review covers the evidence supporting each model of signalling and outlines future directions that may address which model applies in given biological settings.  相似文献   

15.
Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654]  相似文献   

16.
The primary cilium is a ubiquitous, non-motile microtubular organelle lacking the central pair of microtubules found in motile cilia. Primary cilia are surrounded by a membrane, which has a unique complement of membrane proteins, and may thus be functionally different from the plasma membrane. The function of the primary cilium remains largely unknown. However, primary cilia have important sensory transducer properties, including the response of renal epithelial cells to fluid flow or mechanical stimulation. Recently, renal cystic diseases have been associated with dysfunctional ciliary proteins. Although the sensory properties of renal epithelial primary cilia may be associated with functional channel activity in the organelle, information in this regard is still lacking. This may be related to the inherent difficulties in assessing electrical activity in this rather small and narrow organelle. In the present study, we provide the first direct electrophysiological evidence for the presence of single channel currents from isolated primary cilia of LLC-PK1 renal epithelial cells. Several channel phenotypes were observed, and addition of vasopressin increased cation channel activity, which suggests the regulation, by the cAMP pathway of ciliary conductance. Ion channel reconstitution of ciliary versus plasma membranes indicated a much higher channel density in cilia. At least three channel proteins, polycystin-2, TRPC1, and interestingly, the alpha-epithelial sodium channel, were immunodetected in this organelle. Ion channel activity in the primary cilium of renal cells may be an important component of its role as a sensory transducer.  相似文献   

17.
Summary The structure of modified 9 + 0 cilia in the organ of Bellonci was studied in Gammarus setosus from late embryonic development to adult after routine fixation, fixation with lanthanum treatment, and prefixation with ethylene diamine tetraacetic acid and sodium dodecyl sulphate. The cilia are distinct from known sensory cilia in that they occur in pairs and lack centrioles. The basal bodies are at right angles to each other. The basal body cylinders consist of dense microtubule doublets and have 3 regions: the basal cartwheel, the middle pinwheel and the distal transitional. The pinwheel, which has 9 fins of dense material attached to the doublets, is differentiated into a spiral attachment of the ciliary roots whose periodicity is 70 nm. The scanning electron microscope shows the roots as beaded, tapering ribbons. The coniform outer segments give rise to tubules, each with 1 or 2 single or double microtubules in its core. The tubules are in contact with extracellular chains of calcium granules inside the organ. A bend in the axoneme brings the paired outer segments together. Lamellar bodies develop from the ciliary tubules in embryos and juveniles, but not in adults, except after exposure to lanthanum.  相似文献   

18.
The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li2CO3 were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.  相似文献   

19.
Primary cilia play an essential role in modulating signaling cascades that shape cellular responses to environmental cues to maintain proper tissue development. Mutations in primary cilium proteins have been linked to several rare developmental disorders, collectively known as ciliopathies. Together with other disorders associated with dysfunctional cilia/centrosomes, affected individuals have increased risk of developing metabolic syndrome, neurologic disorders, and diabetes. In pancreatic tissues, cilia are found exclusively in islet and ductal cells where they play an essential role in pancreatic tissue organization. Their absence or disorganization leads to pancreatic duct abnormalities, acinar cell loss, polarity defects, and dysregulated insulin secretion. Cilia in pancreatic tissues are hubs for cellular signaling. Many signaling components, such as Hh, Notch, and Wnt, localize to pancreatic primary cilia and are necessary for proper development of pancreatic epithelium and β‐cell morphogenesis. Receptors for neuroendocrine hormones, such as Somatostatin Receptor 3, also localize to the cilium and may play a more direct role in controlling insulin secretion due to somatostatin's inhibitory function. Finally, unique calcium signaling, which is at the heart of β‐cell function, also occurs in primary cilia. Whereas voltage‐gated calcium channels trigger insulin secretion and serve a variety of homeostatic functions in β‐cells, transient receptor potential channels regulate calcium levels within the cilium that may serve as a feedback mechanism, regulating insulin secretion. This review article summarizes our current understanding of the role of primary cilia in normal pancreas function and in the diseased state. Birth Defects Research (Part C) 102:126–138, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Loss of primary cilia is frequently observed in tumor cells, including pancreatic ductal adenocarcinoma (PDAC) cells, suggesting that the absence of this organelle may promote tumorigenesis through aberrant signal transduction and the inability to exit the cell cycle. However, the molecular mechanisms that explain how PDAC cells lose primary cilia are still ambiguous. In this study, we found that inhibition or silencing of histone deacetylase 2 (HDAC2) restores primary cilia formation in PDAC cells. Inactivation of HDAC2 results in decreased Aurora A expression, which promotes disassembly of primary cilia. We further showed that HDAC2 controls ciliogenesis independently of Kras, which facilitates Aurora A expression. These studies suggest that HDAC2 is a novel regulator of primary cilium formation in PDAC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号