首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
J M Moore  W J Chazin  R Powls  P E Wright 《Biochemistry》1988,27(20):7806-7816
Two-dimensional 1H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, 3JHN alpha coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight beta-strands, one short segment of helix, five reverse turns, and five loops. The beta-strands may be arranged into two beta-sheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key beta-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified.  相似文献   

2.
The solution structure of the 45-residue plant protein, alpha 1-purothionin, is investigated by nuclear magnetic resonance (n.m.r.) spectroscopy. Using a combination of two-dimensional n.m.r. techniques to demonstrate through-bond and through-space (less than 5 A) connectivities, the 1H n.m.r. spectrum of alpha 1-purothionin is assigned in a sequential manner. The secondary structure elements are then delineated on the basis of a qualitative interpretation of short-range nuclear Overhauser effects (NOE) involving the NH, C alpha H and C beta H protons. There are two helices extending from residues 10 to 19 and 23 to 28, two short beta-strands from residues 3 to 5 and 31 to 34 which form a mini anti-parallel beta-sheet, and five turns. In addition, a number of long-range NOE connectivities are assigned and a low resolution tertiary structure is proposed.  相似文献   

3.
The three-dimensional solution structure of reduced (CuI) plastocyanin from French bean leaves has been determined by distance geometry and restrained molecular dynamics methods using constraints obtained from 1H n.m.r. (nuclear magnetic resonance) spectroscopy. A total of 1244 experimental constraints were used, including 1120 distance constraints, 103 dihedral angle constraints and 21 hydrogen bond constraints. Stereospecific assignments were made for 26 methylene groups and the methyls of 11 valines. Additional constraints on copper co-ordination were included in the restrained dynamics calculations. The structures are well defined with average atomic root-mean-square deviations from the mean of 0.45 A for all backbone heavy atoms and 1.08 A for side-chain heavy atoms. French bean plastocyanin adopts a beta-sandwich structure in solution that is similar to the X-ray structure of reduced poplar plastocyanin; the average atomic root-mean-square difference between 16 n.m.r. structures and the X-ray structure is 0.76 A for all backbone heavy atoms. The conformations of the side-chains that constitute the hydrophobic core of French bean plastocyanin are very well defined. Of 47 conserved residues that populate a single chi 1 angle in solution, 43 have the same rotamer in the X-ray structure. Many surface side-chains adopt highly preferred conformations in solution, although the 3J alpha beta coupling constants often indicate some degree of conformational averaging. Some surface side-chains are disordered in both the solution and crystal structures of plastocyanin. There is a striking correlation between measures of side-chain disorder in solution and side-chain temperature factors in the X-ray structure. Side-chains that form a distinctive acidic surface region, believed to be important in binding other electron transfer proteins, appear to be disordered. Fifty backbone amide protons form hydrogen bonds to carbonyls in more than 60% of the n.m.r. structures; 45 of these amide protons exchange slowly with solvent deuterons. Ten hydrogen bonds are formed between side-chain and backbone atoms, eight of which are correlated with decreased proton exchange. Of the 60 hydrogen bonds formed in French bean plastocyanin, 56 occur in the X-ray structure of the poplar protein; two of the missing hydrogen bonds are absent as a result of mutations. It appears that molecular dynamics refinement of highly constrained n.m.r. structures allows accurate prediction of the pattern of hydrogen bonding.  相似文献   

4.
In an attempt to understand the earliest events in the protein folding pathway, the complete sequence of French bean plastocyanin has been synthesized as a series of short peptide fragments, and the conformational preferences of each peptide examined in aqueous solution using proton n.m.r. methods. Plastocyanin consists largely of beta-sheet, with reverse turns and loops between the strands of the sheet, and one short helix. The n.m.r. experiments indicate that most of the peptides derived from the plastocyanin sequence have remarkably little propensity to adopt folded conformations in aqueous solution, in marked contrast to the peptides derived from the helical protein, myohemerythrin (accompanying paper). For most plastocyanin peptides, the backbone dihedral angles are predominantly in the beta-region of conformational space. Some of the peptides show weak NOE connectivities between adjacent amide protons, indicative of small local populations of backbone conformations in the a region of (phi,psi) space. A conformational preference for a reverse turn is seen in the sequence Ala65-Pro-Gly-Glu68, where a turn structure is found in the folded protein. Significantly, the peptide sequences that populate the alpha-region of (phi,psi) space are mostly derived from turn and loop regions in the protein. The addition of trifluoroethanol does not drive the peptides into helical conformations. In one region of the sequence, the n.m.r. spectra provide evidence of the formation of a hydrophobic cluster involving aromatic and aliphatic side-chains. These results have significance for understanding the initiation of protein folding. From these studies of the fragments of plastocyanin (this paper) and myohemerythrin (accompanying paper), it appears that there is a pre-partitioning of the conformational space sampled by the polypeptide backbone that is related to the secondary structure in the final folded state.  相似文献   

5.
Sequence-specific resonance assignments are reported for the 500-MHz 1H-NMR spectrum of the 55-residue neurotoxin B-IV, isolated from the heteronemertine worm Cerebratulus lacteus. A range of two-dimensional homonuclear correlated and NOE spectra was used in making these assignments, which include NH, C alpha H and C beta H resonances, as well as most resonances from longer-chain spin systems, with the exception of the ten Lys residues, where spectral overlap prevented complete, unambiguous assignments. The secondary structure of B-IV was identified from the pattern of sequential (i, i + 1) and medium range (i, i + 2/3/4) NOE connectivities and the location of slowly exchanging backbone amide protons. Two helices are present, incorporating residues 13-26 and 33-49, and the C-terminal five residues form a helix-like structure. A type-I reverse turn, involving residues 28-31 is present in a small loop linking the two major helices, and the N-terminus appears to be unordered at 27 degrees C, although it may adopt a more ordered conformation at lower temperatures. These elements of secondary structure, together with the four disulfide bonds in the protein, provide sufficient information to define the global fold of the molecule in solution. The pH and temperature dependence of the toxin have been investigated by 1H-NMR and the pKa values of several ionisable sidechains determined.  相似文献   

6.
Sequence-specific assignments are reported for the 500-MHz 1H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure of Sh I was defined on the basis of the pattern of sequential NOE connectivities, NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel beta-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a beta-bulge at residues 17 and 18 and a reverse turn, probably a type II beta-turn, involving residues 27-30. No evidence of alpha-helical structure was found.  相似文献   

7.
The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the protease inhibitor IIA from bull seminal plasma is described and documented. The assignments are based entirely on the amino acid sequence and on two-dimensional n.m.r. experiments at 500 MHz. Individual assignments were obtained at 18 degrees C and 45 degrees C for the backbone protons of all 57 amino acid residues, with the single exception of the N-terminal pyroglutamate amide proton. The amino acid side-chain resonance assignments are complete, with the exception of 17 long side-chains, i.e. Pro13, Met43 and all the Glu, Gln, Lys and Arg, where only one or two resonances of C beta H2 and in some cases C gamma H2 could be identified. The sequential assignments showed that the order of the two C-terminal residues in the previously established primary structure had to be changed; this was then confirmed by chemical methods. The chemical shifts for the assigned resonances at 18 degrees C and 45 degrees C are listed for an aqueous solution at pH 4.9. A preliminary characterization of the polypeptide secondary structure was obtained from the observed patterns of sequential connectivities.  相似文献   

8.
The sequence-specific resonance assignment of apo-neocarzinostatin from Streptomyces carzinostaticus was carried out from two-dimensional proton-NMR spectra. The assignments were obtained for the backbone protons of 111 of the 113 residues of the protein, missing the two C alpha H of one glycine but including 3 of the 4 prolines. The majority of side chain protons were also assigned. The secondary structure derived from the analysis of sequential connections corresponds to ten beta-strands separated by clearly identified loops and turns. Inter-strand connectivities and slowly exchanging amide protons confirm the presence of the two disulfide bridges from Cys37 to Cys47 and from Cys88 to Cys93 and indicate a global folding similar to that of the similar proteins, actinoxanthin and macromomycin, for which crystallographic data are available.  相似文献   

9.
The identification of the spin systems that comprise the 1H nuclear magnetic resonance spectrum of French bean Cu(I) plastocyanin (Mr 10,600) has been made using an approach that integrates a wide range of two-dimensional nuclear magnetic resonance experiments. A very large percentage of these assignments has been obtained in spectra acquired from 1H2O solution using a backbone amide-based strategy. The spin systems of 91 of the 99 residues have been assigned to the appropriate amino acid, thereby providing an ample basis for obtaining sequence-specific assignments, as described in the accompanying paper.  相似文献   

10.
The possible conformations of SMS 201-995, an active analogue of somastostatin, have been studied in dimethylsulfoxide solution by 500 MHz proton n.m.r. spectroscopy. The assignments have been made by use of 2D-correlated methods to detect long-range coupling connectivities in aromatic residues and between the alpha protons of consecutive residues. NOESY experiments enabled us to correlate amide and alpha protons of neighbouring amino acid residues, which indicate a less flexible situation than in water. Measurements of temperature coefficients of the amide protons, of NH-C alpha H coupling constants and NOE effects are in favour of one predominant conformation with a beta turn, of type II', involving amino acids Phe3 to Thr6.  相似文献   

11.
H J Dyson  A Holmgren  P E Wright 《Biochemistry》1989,28(17):7074-7087
Complete proton assignments are reported for the 1H nuclear magnetic resonance (NMR) spectrum of Escherichia coli thioredoxin in the oxidized (with active-site disulfide bridge) and reduced (with two sulfhydryl groups) states. The assignments were obtained by using an integrated assignment strategy in which spin systems were identified from a combination of relayed and multiple quantum NMR techniques prior to sequential assignment. Elements of secondary structure were identified in each protein from characteristic nuclear Overhauser effects (NOE), coupling constants, and slowly exchanging amide protons. In both oxidized and reduced thioredoxin, approximately 33% of the 108 amino acid residues participate in a beta-sheet containing four major strands (three antiparallel and one parallel). A further short beta-strand is connected in a parallel fashion at the N-terminal end of the sheet. Two of the antiparallel beta-strands are connected by a 7-residue beta-bulge loop. Three helical segments, also containing approximately 33% of the amino acid residues, are well-defined in both oxidized and reduced thioredoxin. The remaining third of the molecule apparently consists of reverse turns and loops with little defined secondary structure. The global folds of oxidized and reduced thioredoxin are shown to be essentially identical. Both NOE connectivities and chemical shift values for the two proteins are very similar, except in the immediate vicinity of the active site where significant variations in the chemical shift indicate subtle conformational changes. While the overall fold of oxidized thioredoxin is the same in solution and in the crystalline state, some small differences in local conformation are apparent.  相似文献   

12.
Three-dimensional (3D) heteronuclear NMR techniques have been used to make sequential 1H and 15N resonance assignments for most of the residues of Lactobacillus casei dihydrofolate reductase (DHFR), a monomeric protein of molecular mass 18,300 Da. A uniformly 15N-labeled sample of the protein was prepared and its complex with methotrexate (MTX) studied by 3D 15N/1H nuclear Overhauser-heteronuclear multiple quantum coherence (NOESY-HMQC), Hartmann-Hahn-heteronuclear multiple quantum coherence (HOHAHA-HMQC), and HMQC-NOESY-HMQC experiments. These experiments overcame most of the spectral overlap problems caused by chemical shift degeneracies in 2D spectra and allowed the 1H-1H through-space and through-bond connectivities to be identified unambiguously, leading to the resonance assignments. The novel HMQC-NOESY-HMQC experiment allows NOE cross peaks to be detected between NH protons even when their 1H chemical shifts are degenerate as long as the amide 15N chemical shifts are nondegenerate. The 3D experiments, in combination with conventional 2D NOESY, COSY, and HOHAHA experiments on unlabelled and selectively deuterated DHFR, provide backbone assignments for 146 of the 162 residues and side-chain assignments for 104 residues of the protein. Data from the NOE-based experiments and identification of the slowly exchanging amide protons provide detailed information about the secondary structure of the binary complex of the protein with methotrexate. Sequential NHi-NHi+1 NOEs define four regions with helical structure. Two of these regions, residues 44-49 and 79-89, correspond to within one amino acid to helices C and E in the crystal structure of the DHFR.methotrexate.NADPH complex [Bolin et al. (1982) J. Biol. Chem. 257, 13650-13662], while the NMR-determined helix formed by residues 26-35 is about one turn shorter at the N-terminus than helix B in the crystal structure, which spans residues 23-34. Similarly, the NMR-determined helical region comprising residues 102-110 is somewhat offset from the crystal structure's helix F, which encompasses residues 97-107. Regions of beta-sheet structure were characterized in the binary complex by strong alpha CHi-NHi+1 NOEs and by slowly exchanging amide protons. In addition, several long-range NOEs were identified linking together these stretches to form a beta-sheet. These elements align perfectly with corresponding elements in the crystal structure of the DHFR.methotrexate.NADPH complex, which contains an eight-stranded beta-sheet, indicating that the main body of the beta-sheet is preserved in the binary complex in solution.  相似文献   

13.
The sequence-specific 1H nuclear magnetic resonance (n.m.r.) assignment of 49 of the 51 amino acid residues of human B9(Asp) insulin in water at low pH is reported. Spin systems were identified using a series of two-dimensional n.m.r. techniques. For the majority of the amino acid residues with unique spin systems, particularly Ala, Thr, Val, Leu, Ile and Lys, the complete spin systems were identified. Sequence-specific assignments were obtained from sequential nuclear Overhauser enhancement (NOE) connectivities. The results indicate that the solution structure of the mutant closely resembles the crystal structure of native insulin. Thus, the NOE data reveal three helical domains all consistent with the secondary structure of the native human 2Zn insulin in the crystal phase. Numerous slowly exchanging amide protons support these structural elements, and indicate a relatively stable structure of the protein. A corresponding resemblance of the tertiary structures in the two phases is also suggested by slowly exchanging amide protons, and by the extreme chemical shift values observed for the beta-protons of B15(Leu) that agree with a close contact between this residue and the aromatic rings of B24(Phe) and B26(Tyr), as found in the crystal structure of the 2Zn insulin. Finally, there are clear indications that the B9(Asp) insulin mutant exists primarily as a dimer under the given conditions.  相似文献   

14.
The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the trypsin inhibitor homologue K from the venom of Dendroaspis polylepis polylepis is described and documented. The assignments are based entirely on the amino acid sequence and on 2-dimensional n.m.r. experiments at 360 and 500 M Hz. Individual assignments were obtained for the backbone and C beta protons of all 57 residues of the inhibitor homologue K, with the exceptions of the N-terminal amino group, the amide protons of Arg16, Gly37 and Gly40 and the C beta protons of Arg16 and Pro19. The assignments for the non-labile protons of the amino acid side-chains are complete, with the exception of Gln29, Glu49 and all the proline, lysine and arginine residues. For Asn and Trp the labile side-chain protons have also been assigned. The chemical shifts for the assigned resonances are listed for an aqueous solution at 50 degrees C and pH 3.4.  相似文献   

15.
The assignments of individual magnetic resonances of backbone nuclei of a larger protein, ribonuclease H from Escherichia coli, which consists of 155 amino acid residues and has a molecular mass of 17.6 kDa are presented. To remove the problem of degenerate chemical shifts, which is inevitable in proteins of this size, three-dimensional NMR was applied. The strategy for the sequential assignment was, first, resonance peaks of amides were classified into 15 amino acid types by 1H-15N HMQC experiments with samples in which specific amino acids were labeled with 15N. Second, the amide 1H-15N peaks were connected along the amino acid sequence by tracing intraresidue and sequential NOE cross peaks. In order to obtain unambiguous NOE connectivities, four types of heteronuclear 3D NMR techniques, 1H-15N-1H 3D NOESY-HMQC, 1H-15N-1H 3D TOCSY-HMQC, 13C-1H-1H 3D HMQC-NOESY, and 13C-1H-1H 3D HMQC-TOCSY, were applied to proteins uniformly labeled either with 15N or with 13C. This method gave a systematic way to assign backbone nuclei (N, NH, C alpha H, and C alpha) of larger proteins. Results of the sequential assignments and identification of secondary structure elements that were revealed by NOE cross peaks among backbone protons are reported.  相似文献   

16.
Two protein fragments containing the DNA-binding domain (DBD) of the glucocorticoid receptor (GR) have been studied by two-dimensional 1H NMR spectroscopy. The two peptides (93 and 115 residues, respectively) contain a common segment corresponding to residues C440-I519 of the rat GR or residues C421-I500 of the human GR and include two Zn-binding "finger" domains. The structures of this segment are almost identical in the two protein fragments, as judged from chemical shifts and sequential NOE connectivities. More than 90% of all observable 1H resonances within a 71-residue segment encompassing C440-R510 (rat GR) could be sequentially assigned by standard techniques, and stereospecific assignments could be made for the methyl groups in four valine residues within this segment. Sequential NOE connectivities indicate several elements of secondary structure including two alpha-helical segments consisting of residues S459-E469 and P493-G504, a type I reverse turn between residues R479 and C482, a type II reverse turn between residues L475 and G478, and several regions of extended peptide conformation. No evidence for alpha-helical conformation was found within the two putative zinc-finger domains, indicating that the structures of these domains differ from that of TFIIIA-type zinc fingers. The observation of some very slowly exchanging amide protons in the N-terminal (CI) domain of the DBD in combination with slow rotation of the Y452 aromatic ring indicates that this domain has a restricted conformational flexibility compared to the C-terminal (CII) domain. We also observe several long-range NOE connectivities within C440-R510, suggesting that the sequential assignments presented here will provide a basis for a complete structure determination of this segment of the GR.  相似文献   

17.
A low resolution solution structure of the cytokine interleukin-1 beta, a 153 residue protein of molecular weight 17,400, has been determined on the basis of 446 nuclear Overhauser effect (NOE) derived approximate interproton distance restraints involving solely NH, C alpha H and C beta H protons, supplemented by 90 distance restraints for 45 hydrogen bonds, and 79 phi torsion angle restraints. With the exception of 27 C alpha H-C alpha H NOEs, all the NOEs were assigned from a three-dimensional 1H-1H NOE 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum. The torsion angle restraints were obtained from accurate 3JHN alpha coupling constants measured from a HMQC-J spectrum, while the hydrogen bonds were derived from a qualitative analysis of the NOE, coupling constant and amide exchange data. A total of 20 simulated annealing (SA) structures was computed using the hybrid distance geometry-dynamical simulated annealing method. The solution structure of IL-1 beta comprises 12 beta-strands arranged in three pseudo-symmetrical topological units (each consisting of 5 anti-parallel beta-strands), joined by turns, short loops and long loops. The core of the structure, which is made up of the 12 beta-strands, together with the turns joining strands I and II, strands VIII and IX and strands X and XI, is well determined with a backbone atomic root-mean-square (r.m.s.) distribution about the mean co-ordinate positions of 1.2(+/- 0.1) A. The loop conformations, on the other hand, are poorly determined by the current data. A comparison of the core of the low resolution solution structure of IL-1 beta with that of the X-ray structure indicates that they are similar, with a backbone atomic r.m.s. difference of only 1.5 A between the co-ordinates of the restrained minimized mean of the SA structures and the X-ray structure.  相似文献   

18.
D Marion  F Guerlesquin 《Biochemistry》1992,31(35):8171-8179
Two-dimensional nuclear magnetic resonance spectroscopy was used to assign the proton resonances of ferrocytochrome c553 from Desulfovibrio vulgaris Hildenbourough at 37 degrees C and pH = 5.9. Only a few side-chain protons were not identified because of degeneracy or overlap. The spin systems of the 79 amino acids were identified by DQF-COSY and HOHAHA spectra in H2O and D2O. Sequential assignments were obtained from NOESY connectivities between adjacent amide, C alpha H, and C beta H protons. From sequential NH(i)----NH(i + 1) and long-range C alpha H(i)----NH(i + 3) connectivities, four stretches of helices were identified (2----8, 34----46, 53----59, 67----77). Long-range NOE between residues in three different helices provide qualitative information on the tertiary structure, in agreement with the general folding pattern of cytochrome c. The heme protons, including the propionate groups, were assigned, and the identification of Met 57 as sixth heme ligand was established. The dynamical behavior of the ring protons of the six tyrosines was analyzed in detail in terms of steric hindrance. The NMR data for ferrocytochrome c553 are consistent with the X-ray structure for the homologous cytochrome from D. vulgaris Miyazaki. On the basis of the secondary structure element and of observed chemical shift due to the heme ring current, a structural alignment of eukaryotic and prokaryotic cytochromes c is proposed.  相似文献   

19.
海南捕鸟蛛毒素-I(HNTX-I)是从海南捕鸟蛛(Ornithoctonus hainana)的粗毒中纯化的一种新型神经毒素。应用二维1H-NMR.技术研究HNTX-I的溶液结构特点,通过分析水和重水中的DOF-COSY、TOCSY和NOESY谱,识别出HNTX-I全部33个氨基酸残基自旋体系;通过NOESY谱中的dαN、dβN、dNN和Dαδ联系完成了序列专一的谱峰归属,从而确认了HNTX-I所有的主链质子和大于96%的侧链质子的化学位移。并通过分析3JNH-CaH耦合常数、序列间的NOE联系以及慢氢交换质子等,确定HNTX-I的二级结构主要是由三股反平行的β-折迭组成(Lys7-Cys9,Tyr20-Asn23和Trp28-Val31),这些结构特点与已经探明结构的其它蜘蛛毒素的基本相同。这些结果为完全解析HNTX-I的溶液三维结构奠定了基础。  相似文献   

20.
海南捕鸟蛛毒素-Ⅰ(HNTX-Ⅰ)是从海南捕鸟蛛(Ornithoctonus hainana)的粗毒中纯化的一种新型神经毒素.应用二维1H-NMR技术研究HNTX-Ⅰ的溶液结构特点,通过分析水和重水中的DQF-COSY、TOCSY和NOESY谱,识别出HNTX-Ⅰ全部33个氨基酸残基自旋体系;通过NOESY谱中的dαN、dβN、dNN和dαδ联系完成了序列专一的谱峰归属,从而确认了HNTX-Ⅰ所有的主链质子和大于96%的侧链质子的化学位移.并通过分析3JNH-CαH耦合常数、序列间的NOE联系以及慢氢交换质子等,确定HNTX-Ⅰ的二级结构主要是由三股反平行的β-折迭组成(Lys7-Cys9,Tyr20-Asn23和Trp28-Val31),这些结构特点与已经探明结构的其它蜘蛛毒素的基本相同.这些结果为完全解析HNTX-Ⅰ的溶液三维结构奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号