首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liposomes coated with neoglycolipids constructed with mannopentaose and dipalmitoylphosphatidylethanolamine (Man5-DPPE) have been shown to induce cellular immunity against antigens encapsulated in the liposomes. To assess whether these neoglycolipid-coated liposomes can elicit protective immune response against challenge infection, effects of immunization with soluble leishmanial antigens encapsulated in the liposomes were evaluated using Leishmania major infection in susceptible BALB/c mice. Intraperitoneal immunization of mice with leishmanial antigens in the Man5-DPPE-coated liposomes significantly suppressed footpad swelling in comparison to the control, non-immunized mice, while progression of the disease was observed in mice administered antigens in uncoated liposomes and those administered soluble antigens alone, as seen with control mice. Similarly, the number of parasites decreased substantially in local lymph nodes of mice immunized with the antigen in the Man5-DPPE-coated liposomes. Protection against L. major infection in the immunized mice also coincided with an elevated ratio of antigen-specific IgG2a/IgG1 antibodies, which is a profile of T helper-type 1-like immune response. Taken together, these results indicate the possibility that Man5-DPPE-coated liposome-encapsulated antigens could serve as a vaccine that triggers protection against infectious disease.  相似文献   

2.
The gangliosides GM1 and GD1b have recently been reported to be potential target antigens in human motor neuron disease (MND) or motor neuropathy. The mechanism for selective motoneuron and motor nerve impairment by the antibodies directed against these gangliosides, however, is not fully understood. We recently investigated the ganglioside composition of isolated bovine spinal motoneurons and found that the ganglioside pattern of the isolated motoneurons was extremely complex. GM1, GD1a, GD1b, and GT1b, which are major ganglioside components of CNS tissues, were only minor species in motoneurons. Among the various ganglioside species in motoneurons, several were immunoreactive to sera from patients with MND and motor neuropathy. One of these gangliosides was purified from bovine spinal cord and characterized as N-glycolylneuraminic acid-containing GM1 [GM1(NeuGc)] by compositional analysis, fast atom bombardment mass spectra, and the use of specific antibodies. Among seven sera with anti-GM1 antibody activities, five sera reacted with GM1(NeuGc) and two did not. Two other gangliosides, which were recognized by another patient's serum, appeared to be specific for motoneurons. We conclude that motoneurons contained, in addition to the known ganglioside antigens GM1 and GD1b, other specific ganglioside antigens that could be recognized by sera from patients with MND and motor neuropathy.  相似文献   

3.
Specific immune damage to liposomes containing Forssman or globoside glycolipid was inhibited when the liposomes also contained ganglioside. The activity of a human monoclonal Waldenstr?m macroglobulin antibody to Forssman glycolipid was inhibited by each of three gangliosides tested, GM3, GD1a and GD1b. Inhibition of the monoclonal antibody was dependent on the amount of ganglioside in the liposomes, and was diminished by reducing the relative amount of ganglioside. Inhibition also correlated positively with the number of ganglioside sialic acid groups, with inhibition by GT1b greater than GD1a greater than GM3. Naturally occurring human antibodies to globoside glycolipid were detected in 18% (9 out of 50) of normal human sera tested. Immune damage to liposomes induced by each of the three highest-reacting human anti-globoside sera was blocked by liposomal GM3. We conclude that gangliosides can strongly influence immune damage to membranes induced by antibody interactions with adjacent neutral glycolipids.  相似文献   

4.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

5.
In addition to ganglioside GM1b, an unusual and extremely minor ganglioside, GD1 alpha, was efficiently isolated from bovine brain by combination of Q-Sepharose and Iatrobeads column chromatographies. In the course of purification steps, the presence of the sialidase-labile ganglioside was proved by a highly sensitive TLC/enzyme-immunostaining method. The structure was characterized by gas-liquid chromatography, permethylation study, sialidase degradation, immunostaining with specific antibodies, fast atom bombardment-mass spectrometry, and proton magnetic resonance spectrometry. The content of the ganglioside was very small (0.016%) in the total gangliosides. This finding suggests that a synthetic pathway of asialo GM1----GM1b----GD1 alpha may exist in mammalian brains. A monoclonal antibody NA-6 that was obtained by immunizing mice with purified GM1b reacted specifically with GM1b but showed no cross-reactivity with other structurally related gangliosides such as GM1a, GD1a, and so on. Using the method of TLC/immunostaining with NA-6, GM1b was found to be strongly expressed during embryonic days 14-17 in chick brains. Thus, it is assumed that extremely minor gangliosides like GM1b and GD1 alpha found in adult brains are characterized as embryonic molecules.  相似文献   

6.
Negatively charged liposomes, proposed as potential vaccine adjuvants, have been extensively studied in association with various antigens. In the present study, we investigated the adjuvanicity of negatively charged liposomes to enhance the protective immunity of membrane antigens of Leishmania donovani promastigotes (LAg). In comparison to the control mice immunized with phosphate-buffered saline and empty liposomes, immunization with free LAg led to significant levels of protection against infection with virulent promastigotes. Encapsulation of LAg in liposomes also induced effective protection. However, the level of protection by LAg-liposome was not significantly different from that induced by free LAg. Investigation of the immune responses showed, in contrast to free LAg, that immunization with LAg-liposome elicited strong antibody responses. IgG isotype analysis revealed the presence of all 4 isotypes. However, the titer of IgG1 was significantly higher than IgG2a, IgG2b, and IgG3. Following infection, stimulation of IgG and IgG isotypes did not differ in the different immunization groups. Delayed-type hypersensitivity (DTH) analysis after immunization showed significant induction by LAg and LAg-liposomes, in comparison to controls. With infection, again, the level of DTH in all the groups became almost comparable. Stimulation of insufficient cellular response, as reflected by DTH and potentiation of IgG1 over IgG2a, IgG2b, and IgG3 suggest a dominance of Th2 response with this liposome-antigen formulation, resulting in weak protection against visceral leishmaniasis.  相似文献   

7.
目的探讨制备脂质体包裹重组SEF21疫苗,并评价其在预防肠炎沙门菌(S.enteritidis)感染中的作用。方法利用PCR获得SEF21基因,并连接至pET-28a(+)载体。将pET-28a(+)-SEF21在BL21(DE3)大肠埃希菌中表达,通过镍层析柱纯化高表达的rSEF21蛋白。制备脂质体包裹rSEF21疫苗,并对鸡进行2次免疫,然后利用S.enteritidis进行攻毒实验。ELISA检测血清以及肠内容物中的抗体效价。结果所有被免疫鸡的血清及肠黏液中产生了高效价的IgG和IgA抗体。脂质体包裹rSEF21所免疫的鸡的粪便样本中S.enteritidis数量明显下降。结论口服脂质体包裹的重组SEF21蛋白疫苗能有效保护鸡对抗S.enteritidis感染。  相似文献   

8.
AIMS: To examine the efficacy of liposome oral administration to induce systemic and mucosal immune responses against verotoxin-producing Escherichia coli (VTEC) and the effect of the induced antibodies on the binding of the bacteria to Caco-2 cells. METHODS AND RESULTS: Mice were immunized orally with VTEC antigen and monophosphoryl lipid A (MPL)-containing liposomes composed of dipalmitoylphosphatidylcholine, dipalmitoylphosphatidylserine and cholesterol (1 : 1 : 2, molar ratio) (PS-liposome). After immunization, significant IgA and IgG responses to VTEC were induced in both serum and the intestinal lavage fluid in all mice tested. Furthermore, anti-VTEC IgA and IgG antibodies in the lavage fluid effectively inhibited the adhesion of VTEC to Caco-2 cells. CONCLUSIONS: Oral immunization with liposome-associated E. coli O157:H7 antigen can induce significant systemic and mucosal antibody responses against the bacterial antigen and antibodies produced in the intestinal tract, thus functioning as inhibitors for preventing VTEC infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Oral PS-liposome vaccines containing MPL have the potential usefulness for the induction of a protective mucosal immune response against intestinal diseases.  相似文献   

9.
The therapeutic potential of bovine brain gangliosides on the development of insulin deficient diabetes was analysed. Daily ganglioside administration (50 mg/kg body weight) caused a more pronounced rise of blood glucose levels (p less than 0.05) in low dose streptozotocin treated mice, a model of human type I diabetes. Hyperglycemia induced by the injection of a single high dose of streptozotocin was slightly increased by ganglioside administration (not significant). The previously reported protective effect of bovine brain gangliosides on the development of diabetes in NOD mice was thus not found in a second mouse model.  相似文献   

10.
In vitro immunomodulatory properties of gangliosides have been well characterized such as the ganglioside-induced modulation of CD4 on T lymphocytes and inhibition of lectin-induced proliferative response of lymphocytes. These findings have led to an interesting suggestion that gangliosides play a role as in vivo immune modulators, although this possibility is not clearly defined yet. We then first confirmed in vitro effects of gangliosides on murine immunocytes and examined in vivo effects of gangliosides on immune response in mice. Murine spleen cells that were treated with a ganglioside mixture (GS) purified from bovine brain exhibited a marked decrease in CD4 expression, while CD8 expression was slightly suppressed. Transplantation of GS-untreated control immunocytes that were isolated from syngeneic mice into the immune suppressed mice by X-ray irradiation restored in vivo immune responses, while GS-treated cells could not. Immune response was assayed by the evaluation of footpad swelling which was induced by immunization with sheep erythrocytes as antigens. Moreover, intramuscular administration of gangliosides into mice suppressed both immediate (Arthus)-type and delayed-type allergic reactions. These results suggest that gangliosides would be potential in vivo immune modulators.  相似文献   

11.
We previously reported that immunization with intact live cells from schistosomula of Schistosoma japonicum (S.j) partially protected the Kunming strain of mice from challenge infection. In the present work, 2 immune protective experiments were designed to further validate the protective effect induced by this type of vaccine and to optimize the immunization protocol, including the number of inoculations and parasite stages from which immunogenic cells were derived. Three antigens derived from 18-day-old postinfection live (LLC) and dead (DLC) larval worm cells and from dead 42-day-old postinfection adult worm cells (DAC) were used as immunogens. Our results demonstrate that live cells from 18-day-old worms are capable of inducing significant protection in mice using a murine-Sj challenge model as shown by reduction rates of worm recoveries and egg burdens. The development of adult worms was stunted. A Th1-biased immune response was reflected in the protected groups as evidenced by the ratio of IgG2a/IgG1. A 38-kDa polypeptide was recognized by sera from LLC immunized animals. We demonstrate that live parasite cells are a source of novel protective antigens that can be exploited for vaccine development.  相似文献   

12.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

13.
We have isolated and characterized glycopeptides, derived from mouse and bovine cerebral cortex cells, that inhibit protein synthesis and cell growth of normal but not transformed cells. The inhibitor binds to target cell surfaces, and gangliosides have previously been shown to influence cell sensitivity to the glycopeptides. Preincubation with 3.0 micrograms/ml ganglioside GM1 at 0 degrees C for 3 hr sensitized the mouse L-cell line to the inhibitor, as determined by protein synthesis assays. Preincubation of LM cells with ganglioside GM1 alone did not affect protein synthesis rates. In addition, the gangliosides GD1a and GM3 also sensitized the LM cells to the protein synthesis inhibitory effect of the glycopeptide inhibitor. Binding experiments were performed with 3T3 (sensitive) and LM (insensitive) cells to determine if sensitivity to the glycopeptide inhibitor was reflected in binding of the inhibitor to these cells. Binding of 125I-labeled inhibitor to 3T3 cells was maximal after 60 min at 0 degrees C and saturable at approximately 1 X 10(4) molecules/cell. Furthermore, binding of the inhibitor was dose-dependent, with half-maximal binding at 1.5-2.0 nM and saturation at 8.0-10.0 nM. Scatchard plot analysis indicated that the Kd was about 1 X 10(-9) M and that there are 1 X 10(4) receptors/cell. Binding of the inhibitor to LM cells was maximal after 30 min at 0 degrees C and saturation occurred at 5 X 10(3) molecules/cell. We then examined the possibility that gangliosides are the cellular receptor or co-receptor for the glycopeptide inhibitor. Binding of the inhibitor to ganglioside GM1 was first examined after the ganglioside had been preadsorbed to polystyrene tubes. These experiments indicated that the ganglioside did not bind the inhibitor. Ganglioside-containing liposomes from phosphatidylcholine or LM cell membrane components were also prepared; these artificial membranes did not bind appreciable amounts of the iodinated inhibitor. Competition experiments showed that the gangliosides GM1 and GD1a did not neutralize the protein synthesis inhibitory activity of the glycopeptides, indicating that gangliosides do not directly interact with the glycopeptide inhibitor. In addition, binding of the inhibitor to LM cells preincubated with ganglioside GM1 was studied. Although the binding of the inhibitor to LM cells was one-half that observed for 3T3 cells, incorporation of exogenous gangliosides into LM cells did not result in increased binding of the inhibitor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The first part of this work presents the sequence of the first 20 NH2 terminus residues obtained from P30, the major surface Ag of Toxoplasma gondii, purified by HPLC. A synthetic peptide (P30 48-67) has been prepared both in linear form and as a multiple antigenic peptide (MAP) construct. Immunization of mice and rats with the P30 48-67 MAP in the presence of IFA induces high levels of IgG antibodies that recognize both the linear peptide and the MAP construct in ELISA, and P30 in Western blots of NP-40-extracted tachyzoite Ag. Because these sera are negative in immunofluorescence assays with whole tachyzoites, it seems that IgG antibodies induced by P30 48-67 MAP, although recognizing the denatured structure, are unable to recognize the native protein. However, the protective effect of both constructs has then been studied in mice and nude rats. Whereas immunization of mice with the monomeric peptide does not confer any protection against oral infection with 1200 cysts of T. gondii 76K strain (mortality within 11 days), 40% of mice immunized with the MAP construct survived up to 75 days after infection. Nude rats were passively transferred with 5 x 10(4) T lymphocytes from P30 48-67 MAP-immunized Fischer rats before infection with 5 x 10(4) RH strain tachyzoites. They survived up to 40 days after infection and raised an intense IgG antibody response against P30, whereas nude rats transferred with control lymphocytes died within 21 days. This shows that immunization with P30 48-67 MAP also induces an efficient T cell immune response. The present work confirms the recently demonstrated role of P30 in protective immunity and shows the interest of peptide octameric constructions as inducers of partially protective immune responses in toxoplasmosis, as already demonstrated in schistosomiasis.  相似文献   

15.
Exogenously added gangliosides were taken up and incorporated into liposomes just as they are incorporated into cells. Ganglioside GM1 was rapidly taken up by liposomes containing dimyristoyl- or dipalmitoylphosphatidylcholine, cholesterol and dicetyl phosphate. When incubated with a wide range of GM1 concentrations for 18 h, the liposomes incorporated about 10% of the added ganglioside. The rate of GM1 uptake by preformed liposomes was both time- and temperature-dependent. The liposomes also incorporated other gangliosides to a similar extent. The GM1 taken up by preformed liposomes was predominantly located on the outer surface of the liposomes and did not appear to be internalized into the inner half of the lipid bilayer. Liposomes containing GM1 added after liposome formation bound as many anti-GM1 antibodies and as much choleragen as liposomes having GM1 added during the formation of the lipid bilayers. Thus, preformed liposomes sensitized by incubation with GM1 are a good model system for studying the interactions of antibodies and toxins with membrane-associated gangliosides.  相似文献   

16.
This study presents a comparative analysis of gangliosides from lymphoid (spleen and thymus) and other tissues (brain, liver, lung, muscle) of C57BL/6 mice homozygous (-/-) and heterozygous (+/-) for the tumor necrosis factor receptor 1 (TNFRp55). Quantitative and qualitative differences in the expression of the lipid-bound N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) and of various ganglioside biosynthesis pathways were detected between the tissues of the TNFRp55 -/- and the control TNFRp55 +/- mice. Sialic acid profiles showed a strong decrease in the absolute amount of sialic acids (Neu5Ac + Neu5Gc) in the lungs and thymus of homozygous (1.41 and 0.3 ng/mg wet weight, respectively) compared with control heterozygous animals (7.18 and 2.05 ng/mg wet weight, respectively). Considerable differences of Neu5Ac/Neu5Gc ratios in the lungs, muscle, spleen, and thymus were also detected. The gangliosides GM3(Neu5Ac) and GM3(Neu5Gc) were the dominant gangliosides in the lungs of the control animals, whereas the knockout mice almost completely lacked these structures in this organ. Reduced expression of GM1b-type gangliosides (GM1b and GalNAc-GM1b) was also found in the lungs, spleen, and thymus of the TNFRp55 knockout mice. On the other hand, neolacto-series gangliosides were more abundant in the lungs, brain, and muscle of the knockout mice, whereas their expression in the liver, spleen, and thymus was similar in both groups of animals. This study provides in vivo evidence that TNF signaling via the TNFRp55 is involved in the acquisition of a distinct ganglioside assembly in different mouse organs. TNFRp55 signaling seems to be especially important for the activation of the GM1b-type ganglioside biosynthetic pathway that is a unique characteristic of the mouse lymphoid tissues.  相似文献   

17.
Gangliosides, sialic acid-bearing glycosphingolipids, are highly enriched in the vertebrate nervous system. Anti-ganglioside antibodies are associated with various human neuropathies, although the pathogenicity of these antibodies remains unproven. Testing the pathogenic role of anti-ganglioside antibodies will be facilitated by developing high-affinity IgG-class complement-fixing monoclonal anti-bodies against major brain gangliosides, a goal that has been difficult to achieve. In this study, mice lacking complex gangliosides were used as immune-naive hosts to raise anti-ganglioside antibodies. Wild-type mice and knockout mice with a disrupted gene for GM2/GD2 synthase (UDP-N-acetyl-D-galactosamine : GM3/GD3 N-acetyl-D-glactosaminyltransferase) were immunized with GD1a conjugated to keyhole limpet hemocyanin. The knockout mice produced a vigorous anti-GD1a IgG response, whereas wildtype littermates failed to do so. Fusion of spleen cells from an immunized knockout mouse with myeloma cells yielded numerous IgG anti-GD1a antibody-producing colonies. Ganglioside binding studies revealed two specificity classes; one colony representing each class was cloned and characterized. High-affinity monoclonal antibody was produced by each hybridoma : an IgG1 that bound nearly exclusively to GD1a and an IgG2b that bound GD1a, GT1b, and GT1aalpha. Both antibodies readily readily detected gangliosides via ELISA, TLC immune overlay, immunohistochemistry, and immunocytochemistry. In contrast to prior reports using anti-GD1a and anti-GT1b IgM class monoclonal antibodies, the new antibodies bound avidly to granule neurons in brain tissue sections and cell cultures. Mice lacking complex gangliosides are improved hosts for raising high-affinity, high-titer anti-ganglioside IgG antibodies for probing for the distribution and physiology of gangliosides and the pathophysiology of anti-ganglioside antibodies.  相似文献   

18.
BALB/c or C57Bl/6 mice immunized with plasmids containing Trypanosoma cruzi genes developed specific immune responses and protective immunity against lethal parasitic infection. In contrast, in the highly susceptible mouse strain A/Sn, DNA vaccination reduced the peak parasitemia but promoted limited mouse survival after challenge. In the present study, we tested whether the immunogenicity and protective efficacy of vaccination could be improved by combining DNA and recombinant protein immunization regimens. A/Sn mice immunized with plasmid p154/13 which harbours the gene encoding Trypanosoma cruzi trans-sialidase developed a predominant type 1 immune response. In contrast, immunization with the recombinant Trypanosoma cruzi trans-sialidase protein adsorbed to alum generated a typical type 2 immune response. Simultaneous administration of both p154/13 and recombinant Trypanosoma cruzi trans-sialidase protein also led to a predominant type 2 immune response. Sequential immunization consisting of two priming doses of p154/13 followed by booster injections with recombinant Trypanosoma cruzi trans-sialidase protein significantly improved specific type 1 immune response, as revealed by a drastic reduction of the serum IgG1/IgG2a ratio and by an increase in the in vitro interferon-gamma secretion by CD4 T cells. Our observations confirm and extend previous data showing that a DNA-priming protein-boosting regimen might be a general strategy to enhance type 1 immune response to DNA vaccines. Upon challenge with Trypanosoma cruzi, no improvement in protective immunity was observed in mice immunized with the DNA-priming protein-boosting regimen when compared to animals that received DNA only. Therefore, our results suggest that in this experimental model there is no correlation between the magnitude of type 1 immune response and protective immunity against Trypanosoma cruzi infection.  相似文献   

19.
Exogenous gangliosides are known to affect the metabolism when administered to the body. To study the mechanism of this effect three types of gangliosides were administered intraperitoneally to mice and the changes in the enzyme activity of the cerebral tissues studied. The effect of GM2 from bovine brain was characterized by a decrease in the activity of various aminopeptidases, while GD3 from cow's milk caused an increase in the activity of sugar-related enzymes such as sialidase, glucosidase, and fucosidase. GM3 from horse erythrocytes showed intermediate effects between GM2 and GD3. Multivariate analysis showed that the effects of the three gangliosides are clearly separable statistically. These results which demonstrate the sugar moiety-specificity of gangliosides are discussed in relation to the A and B pathways of ganglioside synthesis.  相似文献   

20.
GM1 gangliosidosis is a progressive neurodegenerative disease caused by deficiencies in lysosomal acid beta-galactosidase (beta-gal) and involves accumulation and storage of ganglioside GM1 and its asialo form (GA1) in brain and visceral tissues. Similar to the infantile/juvenile human disease forms, B6/129Sv beta-gal knockout (ko) mice express residual tissue beta-gal activity and significant elevations of brain GM1, GA1, and total gangliosides. Previous studies suggested that inbred DBA/2J (D2) mice may model a mild form of the human disease since total brain ganglioside and GM1 concentration is higher while beta-gal specific activity is lower (by 70-80%) in D2 mice than in inbred C57BL/6J (B6) mice and other mouse strains. A developmental genetic analysis was conducted to determine if the genes encoding beta-gal (Bgl) in the D2 and the ko mice were functionally allelic and if the reduced brain beta-gal activity in D2 mice could account for elevations in total brain gangliosides and GM1. Crosses were made between D2 mice homozygous for the Bgld allele (d/d), and either B6/129Sv mice heterozygous for the Bgl+ allele (+/-) or homozygous for the ko Bgl- allele (-/-) to generate d/+ and d/- mice. Specific beta-gal activity (nmol/mg protein/h) showed additive inheritance in brain, liver, and kidney at juvenile (21 days) and adult (255 days) ages with the d/- mice having only about 16% of the beta-gal activity as that in the +/+ mice. These results indicate that the Bgl genes in the D2 and the ko mice are noncomplementing functional alleles. However, the d/- mice did not express GA1 and had total brain ganglioside and GM1 concentrations similar to those in the d/+ and +/+ mice. These results suggest that the reduced brain beta-gal activity alone cannot account for the elevation of total brain gangliosides and GM1 in the D2 mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号