首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogenesis of cytochrome c1 involves a number of steps including: synthesis as a precursor with a bipartite signal sequence, transfer across the outer and inner mitochondrial membranes, removal of the first part of the presequence in the matrix, reexport to the outer surface of the inner membrane, covalent addition of heme, and removal of the remainder of the presequence. In this report we have focused on the steps of heme addition, catalyzed by cytochrome c1 heme lyase, and of proteolytic processing during cytochrome c1 import into mitochondria. Following translocation from the matrix side to the intermembrane-space side of the inner membrane, apocytochrome c1 forms a complex with cytochrome c1 heme lyase, and then holocytochrome c1 formation occurs. Holocytochrome c1 formation can also be observed in detergent-solubilized preparations of mitochondria, but only after apocytochrome c1 has first interacted with cytochrome c1 heme lyase to produce this complex. Heme linkage takes place on the intermembrane-space side of the inner mitochondrial membrane and is dependent on NADH plus a cytosolic cofactor that can be replaced by flavin nucleotides. NADH and FMN appear to be necessary for reduction of heme prior to its linkage to apocytochrome c1. The second proteolytic processing of cytochrome c1 does not take place unless the covalent linkage of heme to apocytochrome c1 precedes it. On the other hand, the cytochrome c1 heme lyase reaction itself does not require that processing of the cytochrome c1 precursor to intermediate size cytochrome c1 takes place first. In conclusion, cytochrome c1 heme lyase catalyzes an essential step in the import pathway of cytochrome c1, but it is not involved in the transmembrane movement of the precursor polypeptide. This is in contrast to the case for cytochrome c in which heme addition is coupled to its transport directly across the outer membrane into the intermembrane space.  相似文献   

2.
The import of cytochrome c into Neurospora crassa mitochondria was examined at distinct stages in vitro. The precursor protein, apocytochrome c, binds to mitochondria with high affinity and specificity but is not transported completely across the outer membrane in the absence of conversion to holocytochrome c. The bound apocytochrome c is accessible to externally added proteases but at the same time penetrates far enough through the outer membrane to interact with cytochrome c heme lyase. Formation of a complex in which apocytochrome c and cytochrome c heme lyase participate represents the rate-limiting step of cytochrome c import. Conversion from the bound state to holocytochrome c, on the other hand, occurs 10-30-fold faster. Association of apocytochrome c with cytochrome c heme lyase also takes place after solubilizing mitochondria with detergent. We conclude that the bound apocytochrome c, spanning the outer membrane, forms a complex with cytochrome c heme lyase from which it can react further to be converted to holocytochrome c and be translocated completely into the intermembrane space.  相似文献   

3.
Cytochrome c is synthesized in the cytoplasm as apocytochrome c, lacking heme, and then imported into mitochondria. The relationship between attachment of heme to the apoprotein and its import into mitochondria was examined using an in vitro system. Apocytochrome c transcribed and translated in vitro could be imported with high efficiency into mitochondria isolated from normal yeast strains. However, no import of apocytochrome c occurred with mitochondria isolated from cyc3- strains, which lack cytochrome c heme lyase, the enzyme catalyzing covalent attachment of heme to apocytochrome c. In addition, amino acid substitutions in apocytochrome c at either of the 2 cysteine residues that are the sites of the thioether linkages to heme, or at an immediately adjacent histidine that serves as a ligand of the heme iron, resulted in a substantial reduction in the ability of the precursor to be translocated into mitochondria. Replacement of the methionine serving as the other iron ligand, on the other hand, had no detectable effect on import of apocytochrome c in this system. Thus, covalent heme attachment is a required step for import of cytochrome c into mitochondria. Heme attachment, however, can occur in the absence of mitochondrial import since we have detected CYC3-encoded heme lyase activity in solubilized yeast extracts and in an Escherichia coli expression system. These results suggest that protein folding triggered by heme attachment to apocytochrome c is required for import into mitochondria.  相似文献   

4.
Heme is covalently attached to cytochrome c by the enzyme cytochrome c heme lyase. To test whether heme attachment is required for import of cytochrome c into mitochondria in vivo, antibodies to cytochrome c have been used to assay the distributions of apo- and holocytochromes c in the cytoplasm and mitochondria from various strains of the yeast Saccharomyces cerevisiae. Strains lacking heme lyase accumulate apocytochrome c in the cytoplasm. Similar cytoplasmic accumulation is observed for an altered apocytochrome c in which serine residues were substituted for the two cysteine residues that normally serve as sites of heme attachment, even in the presence of normal levels of heme lyase. However, detectable amounts of this altered apocytochrome c are also found inside mitochondria. The level of internalized altered apocytochrome c is decreased in a strain that completely lacks heme lyase and is greatly increased in a strain that overexpresses heme lyase. Antibodies recognizing heme lyase were used to demonstrate that the enzyme is found on the outer surface of the inner mitochondrial membrane and is not enriched at sites of contact between the inner and outer mitochondrial membranes. These results suggest that apocytochrome c is transported across the outer mitochondrial membrane by a freely reversible process, binds to heme lyase in the intermembrane space, and is then trapped inside mitochondria by an irreversible conversion to holocytochrome c accompanied by folding to the native conformation. Altered apocytochrome c lacking the ability to have heme covalently attached accumulates in mitochondria only to the extent that it remains bound to heme lyase.  相似文献   

5.
The covalent attachment of heme to mitochondrial cytochrome c is catalysed by holocytochrome c synthase (HCCS, also called heme lyase). How HCCS functions and recognises the substrate apocytochrome is unknown. Here we have examined HCCS recognition of a chimeric substrate comprising a short mitochondrial cytochrome c N-terminal region with the C-terminal sequence, including the CXXCH heme-binding motif, of a bacterial cytochrome c that is not otherwise processed by HCCS. Heme attachment to the chimera demonstrates the importance of the N-terminal region of the cytochrome. A series of variants of a mitochondrial cytochrome c with amino acid replacements in the N-terminal region have narrowed down the specificity determinants, providing insight into HCCS substrate recognition.  相似文献   

6.
1. Precipitating antibodies specific for apocytochrome c and holocytochrome c, respectively, were employed to study synthesis and intracellular transport of cytochrome c in Neurospora in vitro. 2. Apocytochrome c as well as holocytochrome c were found to be synthesized in a cell-free homogenate. A precursor product relationship between the two components is suggested by kinetic experiments. 3. Apocytochrome c synthesized in vitro was found in the post-ribosomal fraction and not in the mitochondrial fraction, whereas holocytochrome c synthesized in vitro was mainly detected in the mitochondrial fraction. A precursor product relationship between postribosomal apocytochrome c and mitochondrial holocytochrome c is indicated by the labelling data. In the microsomal fraction both apocytochrome c and holocytochrome c were found in low amounts. Their labeling kinetics do not subbest a precursor role of microsomal apocytochrome c or holocytochrome c. 4. Formation of holocytochrome c from apocytochrome c was observed when postribosomal supernatant containing apocytochrome c synthesized in vitro was incubated with isolated mitochondria, but not when incubated in the absence of mitochondria. The cytochrome c formed under these conditions was detected in the mitochondria. 5. Conversion of labelled apocytochrome c synthesized in vitro to holocytochrome c during incubation of a postribosomal supernatant with isolated mitochondria was inhibited when excess isolated apocytochrome c, but not when holocytochrome c was added. 6. The data presented are interpreted to show that apocytochrome c is synthesized on cytoplasmic ribosomes and released into the supernatant. It is suggested that apocytochrome c migrates to the inner mitochondrial membrane, where the heme group is covalently linked to the apoprotein. The hypothesis is put forward that the concomitant change in conformation leads to trapping of holocytochrome c in the membrane. The problems of permeability of the outer mitochondrial membrane to apocytochrome c and the site and nature of the reaction by which the heme group is linked to the apoprotein are discussed.  相似文献   

7.
R A Stuart  W Neupert 《Biochimie》1990,72(2-3):115-121
The cytochrome c import pathway differs markedly from the general route taken by the majority of other imported proteins, which is characterized by the import involvement of namely, surface receptors, the general insertion protein (GIP), contact sites and by the requirement of a membrane potential (delta psi). Unique features of both the cytochrome c precursor (apocytochrome c) and of the mechanism that transports it into mitochondria, have contributed to the evolution of a distinct import pathway that is not shared by any other mitochondrial protein analysed thus far. The cytochrome c pathway is particularly unique because i) apocytochrome c appears to have spontaneous membrane insertion-activity; ii) cytochrome c heme lyase seems to act as a specific binding site in lieu of a surface receptor and; iii) covalent heme addition and the associated refolding of the polypeptide appears to provide the free energy for the translocation of the cytochrome c polypeptide across the outer mitochondrial membrane.  相似文献   

8.
1. Methylation of the lysine at residue 72 of yeast apocytochrome c increases its import into mitochondria. 2. Using methylated and unmethylated apocytochrome c as substrate and intact yeast mitochondria and a solubilized mitochondrial fraction as a source of cytochrome c heme lyase, the results show that the methylation state of the apoprotein has no significant effect on its conversion to holoprotein. 3. The above result suggests that the import mechanism is separate from the heme-attaching activity. 4. Unmethylated apocytochrome c was less resistant to a yeast homogenate fraction that methylated apocytochrome c, suggesting that methylation of apocytochrome c alters the conformation of the whole protein.  相似文献   

9.
Allen JW 《The FEBS journal》2011,278(22):4198-4216
In c-type cytochromes, heme becomes covalently attached to the polypeptide chain by a reaction between the vinyl groups of the heme and cysteine thiols from the protein. There are two such cytochromes in mitochondria: cytochrome c and cytochrome c(1). The heme attachment is a post-translational modification that is catalysed by different biogenesis proteins in different organisms. Three types of biogenesis system are found or predicted in mitochondria: System I (the cytochrome c maturation system); System III (termed holocytochrome c synthase (HCCS) or heme lyase); and System V. This review focuses primarily on cytochrome c maturation in mitochondria containing HCCS (System III). It describes what is known about the enzymology and substrate specificity of HCCS; the role of HCCS in human disease; import of HCCS into mitochondria; import of apocytochromes c and c(1) into mitochondria and the close relationships with HCCS-dependent heme attachment; and the role of the fungal cytochrome c biogenesis accessory protein Cyc2. System V is also discussed; this is the postulated mitochondrial cytochrome c biogenesis system of trypanosomes and related organisms. No cytochrome c biogenesis proteins have been identified in the genomes of these organisms whose c-type cytochromes also have a unique mode of heme attachment.  相似文献   

10.
Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane.  相似文献   

11.
The question of whether cytochrome c could be functionally sorted to the mitochondrial intermembrane space along a "conservative sorting" pathway was investigated using a fusion protein termed pLc1-c. pLc1-c contains 3-fold targeting information, namely, the complete bipartite presequence of the cytochrome c1 precursor joined to the amino terminus of apocytochrome c. pLc1-c could be selectively imported into the intermembrane space either directly across the outer membrane along a cytochrome c import route or along a cytochrome c1 route via the matrix. Thus, apocytochrome c could be sorted along a conservative sorting pathway; however, following reexport from the matrix, apo-Lc1-c could not be converted to its holo counterpart. Despite the apparent similarity of structure and functional location of the heme lyases and similarity of the heme binding regions in their respective apoproteins, cytochrome c heme lyase and cytochrome c1 heme lyase apparently have different and nonoverlapping substrate specificities.  相似文献   

12.
Heme attachment to the apoforms of fungal mitochondrial cytochrome c and c1 requires the activity of cytochrome c and c1 heme lyases (CCHL and CC1HL), which are enzymes with distinct substrate specificity. However, the presence of a single heme lyase in higher eukaryotes is suggestive of broader substrate specificity. Here, we demonstrate that yeast CCHL is active toward the non-cognate substrate apocytochrome c1, i.e. CCHL promotes low levels of apocytochrome c1 conversion to its holoform in the absence of CC1HL. Moreover, that the single human heme lyase also displays a broader cytochrome specificity is evident from its ability to substitute for both yeast CCHL and CC1HL. Multicopy and genetic suppressors of the absence of CC1HL were isolated and their analysis revealed that the activity of CCHL toward cytochrome c1 can be enhanced by: 1) reducing the abundance of the cognate substrate apocytochrome c, 2) increasing the accumulation of CCHL, 3) modifying the substrate-enzyme interaction through point mutations in CCHL or cytochrome c1, or 4) overexpressing Cyc2p, a protein known previously only as a mitochondrial biogenesis factor. Based on the functional interaction of Cyc2p with CCHL and the presence of a putative FAD-binding site in the protein, we hypothesize that Cyc2p controls the redox chemistry of the heme lyase reaction.  相似文献   

13.
The nuclear cyt-2-1 mutant of Neurospora crassa is characterized by a gross deficiency of cytochrome c (Bertrand, H., and Collins, R. A. (1978) Mol. Gen. Genet. 166, 1-13). The mutant produces mRNA that can be translated into apocytochrome c in vitro. Apocytochrome c is also synthesized in vivo in cyt-2-1, but it is rapidly degraded and thus does not accumulate in the cytosol. Mitochondria from wild-type cells bind apocytochrome c made in vitro from either wild-type or cyt-2-1 mRNA and convert it to holocytochrome c. This conversion depends on the addition of heme by cytochrome c heme lyase and is coupled to translocation of cytochrome c into the intermembrane space. Mitochondria from the cyt-2-1 strain are deficient in the ability to bind apocytochrome c. They are also completely devoid of cytochrome c heme lyase activity. These defects explain the inability of the cyt-2-1 mutant to convert apocytochrome c to the holo form and to import it into mitochondria.  相似文献   

14.
Cytochromes c are typically characterized by the covalent attachment of heme to polypeptide through two thioether bonds with the cysteine residues of a Cys-Xaa-Xaa-Cys-His peptide motif. In many Gram-negative bacteria, the heme is attached to the polypeptide by the periplasmically functioning cytochrome c maturation (Ccm) proteins. Exceptionally, Hydrogenobacter thermophilus cytochrome c(552), which has a normal CXXCH heme-binding motif, and variants with AXXCH, CXXAH, and AXXAH motifs, can be expressed as stable holocytochromes in the cytoplasm of Escherichia coli. By targeting these proteins to the periplasm using a signal peptide, with or without co-expression of the Ccm proteins, we have assessed the ability of the Ccm system to attach heme to proteins with no, one, or two cysteine residues in the heme-binding motif. Only the wild-type protein, with two cysteines, was effectively processed and thus accumulated in the periplasm as a holocytochrome. This is strong evidence for disulfide bond formation involving the two cysteine residues of apocytochrome c as an intermediate in Ccm-type Gram-negative bacterial cytochrome c biogenesis and/or that only a pair of cysteines can be recognized by the heme attachment apparatus.  相似文献   

15.
Cytochrome c is a component of mitochondrial respiratory chain, located at the outer side of mitochondrial inner membrane. Its precursor, apocytochrome c, is encoded by a nuclear gene, synthesized on cytoplasmic ribosomes, and posttranslationally imported into mitochondria, but apocytochrome c is unique in the translocation compared with most mitochondrial proteins. It does not carry a cleavable amino terminal targeting sequence; no proteinous receptor on the mitochondrial outer membrane is identified for its import and its translocation does not compete with other preproteins for translocation machinery in the outer membrane. Besides, neither ATP nor membrane potential is required for its translocation across mitochonctria.  相似文献   

16.
The maturation of c-type cytochromes requires the covalent attachment of the heme cofactor to the apoprotein. For this process, plant mitochondria follow a pathway distinct from that of animal or yeast mitochondria, closer to that found in alpha- and gamma-proteobacteria. We report the first characterization of a nuclear-encoded component, namely AtCCME, the Arabidopsis thaliana orthologue of CcmE, a periplasmic heme chaperone in bacteria. AtCCME is targeted to mitochondria, and its N-terminal signal peptide is cleaved upon import. AtCCME is a peripheral protein of the mitochondrial inner membrane, and its major hydrophilic domain is oriented toward the intermembrane space. Although a AtCCME (Met(79)-Ser(256)) is not fully able to complement an Escherichia coli CcmE mutant strain for bacterial holocytochrome c production, it is able to bind heme covalently through a conserved histidine, a feature previously shown for E. coli CcmE. Our results suggest that AtCCME is important for cytochrome c maturation in A. thaliana mitochondria and that its heme-binding function has been conserved evolutionary between land plant mitochondria and alpha-proteobacteria.  相似文献   

17.
Biogenesis of c-type cytochromes in Escherichia coli involves a number of membrane proteins (CcmA-H), which are required for the transfer of heme to the periplasmically located apocytochrome c. The pathway includes (i) covalent, transient binding of heme to the periplasmic domain of the heme chaperone CcmE; (ii) the subsequent release of heme; and (iii) transfer and covalent attachment of heme to apocytochrome c. Here, we report that CcmF is a key player in the late steps of cytochrome c maturation. We demonstrate that the conserved histidines His-173, His-261, His-303, and His-491 and the tryptophan-rich signature motif of the CcmF protein family are functionally required. Co-immunoprecipitation experiments revealed that CcmF interacts directly with the heme donor CcmE and with CcmH but not with apocytochrome c. We propose that CcmFH forms a bacterial heme lyase complex for the transfer of heme from CcmE to apocytochrome c.  相似文献   

18.
Mitochondrial apocytochrome c and c1 are converted to their holoforms in the intermembrane space by attachment of heme to the cysteines of the CXXCH motif through the activity of assembly factors cytochrome c heme lyase and cytochrome c1 heme lyase (CCHL and CC1HL). The maintenance of apocytochrome sulfhydryls and heme substrates in a reduced state is critical for the ligation of heme. Factors that control the redox chemistry of the heme attachment reaction to apocytochrome c are known in bacteria and plastids but not in mitochondria. We have explored the function of Cyc2p, a candidate redox cytochrome c assembly component in yeast mitochondria. We show that Cyc2p is required for the activity of CCHL toward apocytochrome c and c1 and becomes essential for the heme attachment to apocytochrome c1 carrying a CAPCH instead of CAACH heme binding site. A redox function for Cyc2p in the heme lyase reaction is suggested from 1) the presence of a noncovalently bound FAD molecule in the C-terminal domain of Cyc2p, 2) the localization of Cyc2p in the inner membrane with the FAD binding domain exposed to the intermembrane space, and 3) the ability of recombinant Cyc2p to carry the NADPH-dependent reduction of ferricyanide. We postulate that, in vivo, Cyc2p interacts with CCHL and is involved in the reduction of heme prior to its ligation to apocytochrome c by CCHL.  相似文献   

19.
The dependence of import of chicken heart apocytochrome c on its transformation to holoform by heme attachment was studied. Results showed that there was no difference in the translocation of apocytochrome c across the mitochondrial membrane in the presence or absence of hemin + dithionite. Furthermore, two heme unattached mutants (H18D. C17S) were prepared, which could still be accumulated in mitochondria, but their import velocity was obviously reduced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号