首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Geranylgeranyl diphosphate synthase (GGPPS, EC: 2.5.1.29) catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes including Taxol, one of the most potent antitumor drugs. In order to investigate the role of GGPP synthase in taxol biosynthesis, we cloned, characterized and functionally expressed the GGPP synthase gene from Taxus media. A 3743-bp genomic sequence of T. media was isolated by genome walking strategy which contained an 1182-bp open reading frame (ORF) encoding a 393-amino acid polypeptide that showed high similarity to other plant GGPPSs. Subsequently the full-length cDNA of the GGPPS gene of T. media (designated TmGGPPS) was amplified by RACE. Bioinformatic analysis showed that TmGGPPS was an intron-free gene and its deduced polypeptide contained all the five conserved domains and functional aspartate-rich motifs of the prenyltransferases. By constructing the phylogenetic tree of plant GGPPSs, it was found that plant-derived GGPPSs could be divided into two classes, angiosperm and gymnosperm classes, which might have evolved in parallel from the same ancestor. To our knowledge this was the first report that the geranylgeranyl diphosphate synthase genes were free of intron and evolved in parallel between angiosperms and gymnosperms. The coding sequence of TmGGPPS was expressed in yeast mutant (SFNY368) lacking of GGPP synthase activity through functional complementation, and the transgenic yeast showed to have activity of GGPP synthase. This was also the first time to use SFNY368 to identify the function of plant-derived GGPPSs. Furthermore, investigation of the impact of methyl jasmonate (MeJA) on the expression of TmGGPPS revealed that MeJA-treated T. media cultured cells had much higher expression of TmGGPPS than untreated cells.  相似文献   

2.
Geranylgeranyl diphosphate synthase (GGPPS, EC: 2.5.1.29) catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for ginkgolide biosynthesis. Here we reported for the first time the cloning of a new full-length cDNA encoding GGPPS from the living fossil plant Ginkgo biloba. The full-length cDNA encoding G. biloba GGPPS (designated as GbGGPPS) was 1657bp long and contained a 1176bp open reading frame encoding a 391 amino acid protein. Comparative analysis showed that GbGGPPS possessed a 79 amino acid transit peptide at its N-terminal, which directed GbGGPPS to target to the plastids. Bioinformatic analysis revealed that GbGGPPS was a member of polyprenyltransferases with two highly conserved aspartate-rich motifs like other plant GGPPSs. Phylogenetic tree analysis indicated that plant GGPPSs could be classified into two groups, angiosperm and gymnosperm GGPPSs, while GbGGPPS had closer relationship with gymnosperm plant GGPPSs.  相似文献   

3.
Geranylgeranyl diphosphate synthase (GGPPS) [EC 2.5.1.29] catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes such as taxol. Herein, a full-length cDNA encoding GGPPS (designated as CgGGPPS) was cloned and characterized from hazel (Corylus avellana L. Gasaway), a taxol-producing angiosperms. The full-length cDNA of CgGGPPS was 1515 bp with a 1122 bp open reading frame (ORF) encoding a 373 amino acid polypeptide. The CgGGPPS genomic DNA sequence was also obtained, revealing CgGGPPS gene was not interrupted by an intron. Southern blot analysis indicated that CgGGPPS belonged to a small gene family. Tissue expression pattern analysis indicated that CgGGPPS expressed the highest in leaves. RT–PCR analysis indicated that CgGGPPS expression could be induced by exogenous methyl jasmonate acid. Furthermore, carotenoid accumulation was observed in Escherichia coli carrying pACCAR25ΔcrtE plasmid carrying CgGGPPS. The result revealed that cDNA encoded a functional GGPP synthase.  相似文献   

4.
5.
Geranylgeranyl diphosphate synthase (GGPPS, EC: 2.5.1.29) catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes including tanshinone. In this study, a full-length cDNA encoding GGPPS was isolated from Salvia miltiorrhiza by rapid amplification of cDNA ends (RACE) for the first time, which was designated as SmGGPPS (GenBank Accession No. FJ643617). The full-length cDNA of SmGGPPS was 1,234 bp containing a 1,092 bp open reading frame (ORF) encoding a polypeptide of 364 amino acids. Analysis of SmGGPPS genomic DNA revealed that it contained 2 exons and 1 intron. Bioinformatics analyses revealed that the deduced SmGGPPS had extensive homology with other plant GGPPSs contained all 5 conserved domains and functional aspartate-rich motifs of the prenyltransferases. Molecular modeling showed that SmGGPPS is a new GGPPS with a spatial structure similar to other plant GGPPSs. Phylogenetic tree analysis indicated that SmGGPPS belongs to the plant GGPPS super-family and has the closest relationship with GGPPS from Nicotiana attenuate. The functional identification in Escherichia coli showed that SmGGPPS could accelerate the biosynthesis of carotenoid, demonstrating that SmGGPPS encoded a functional protein. Expression pattern analysis implied that SmGGPPS expressed higher in leaves and roots, weaker in stems. The expression of SmGGPPS could be up-regulated by Salicylic acid (SA) in leaves and inhibited by methyl jasmonate (MeJA) in 3 tested tissues, suggesting that SmGGPPS was elicitor-responsive. This work will be helpful to understand more about the role of SmGGPPS involved in the tanshinones biosynthesis pathway and metabolic engineering to improve tanshiones production in S. miltiorrhiza.  相似文献   

6.
香叶基香叶基焦磷酸合酶(Geranylgeranyl pyrophosphate synthase,GGPPS)是植物细胞二萜类物质合成的重要调节靶点。本研究从药用植物丹参中克隆了一条新的GGPPS基因(SmGGPPS3),基因全长2908 bp,包含一个931 bp的内含子和一个960 bp的编码序列。推测的氨基酸序列与蓖麻、橡胶、拟南芥等植物GGPPS一致性达到67%以上。实时定量PCR结果显示,SmGGPPS3基因在丹参不同发育时期不同器官中表达差异显著,同时受茉莉酸甲酯和病原菌的诱导。遗传互补实验也表明,SmGGPPS3编码蛋白具有GGPP合酶的活性。  相似文献   

7.
Terpenes are the largest and most diverse class of plant specialized metabolites. Sesterterpenes(C25), which are derived from the plastid methylerythritol phosphate pathway,were recently characterized in plants. In Arabidopsis thaliana, four genes encoding geranylfarnesyl diphosphate synthase(GFPPS)(AtGFPPS1 to 4) are responsible for the production of GFPP, which is the common precursor for sesterterpene biosynthesis. However,the interplay between sesterterpenes and other known terpenes remain e...  相似文献   

8.
9.
Paclitaxel (Taxol) is a widely used anticancer isoprenoid produced by the secondary metabolism of yew (Taxus sp.) trees. However, only limited amounts of Taxol or related metabolites (taxoids) can be obtained from the currently available sources. In this work we have taken the first step toward genetically engineering the biosynthesis of taxoids in angiosperms. The first committed step in Taxol biosynthesis is the production of taxadiene from geranylgeranyl diphosphate (GGPP), catalyzed by the plastid-localized enzyme taxadiene synthase (TXS). A recombinant T. baccata TXS lacking the putative plastid targeting peptide and fused to a C-terminal histidine (His) tag was shown to be enzymatically active in Escherichia coli. Constitutive production of the full-length His-tagged enzyme in Arabidopsis thaliana plants led to the accumulation of taxadiene and concomitant growth retardation and decreased levels of photosynthetic pigment in transgenic plants. Although these phenotypes may derive from a toxic effect of taxadiene, the lower accumulation of endogenous plastid isoprenoid products such as carotenoids and chlorophylls in transgenic plants also suggests that the constitutive production of an active TXS enzyme might alter the balance of the GGPP pool. Induction of transgene expression using a glucocorticoid-mediated system consistently resulted in a more efficient recruitment of GGPP for the production of taxadiene, which reached levels 30-fold higher than those in plants constitutively expressing the transgene. This accomplishment illustrates the possibility of engineering the production of taxoids and other GGPP-derived isoprenoids in crop plants despite the constraints associated with limited knowledge with regard to regulation of GGPP availability.  相似文献   

10.
11.
12.
In biotechnology, the heterologous biosynthesis of isoprenoid compounds in Escherichia coli is a field of great interest and growth. In order to achieve higher isoprenoid yields in heterologous E. coli strains, it is necessary to quantify the pathway intermediates and adjust gene expression. In this study, we developed a precise and sensitive nonradioactive method for the simultaneous quantification of the isoprenoid precursors farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) in recombinant and wild-type E. coli cells. The method is based on the dephosphorylation of FPP and GGPP into the respective alcohols and involves their in situ extraction followed by separation and detection using gas chromatography–mass spectrometry. The integration of a geranylgeranyl diphosphate synthase gene into the E. coli chromosome leads to the accumulation of GGPP, generating quantities as high as those achieved with a multicopy expression vector. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. Vallon and S. Ghanegaonkar contributed equally to this work.  相似文献   

13.
14.
Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta.  相似文献   

15.
We present here a study of a eukaryotic trans-prenylsynthase from the malaria pathogen Plasmodium vivax. Based on the results of biochemical assays and contrary to previous indications, this enzyme catalyzes the production of geranylgeranyl pyrophosphate (GGPP) rather than farnesyl pyrophosphate (FPP). Structural analysis shows that the product length is constrained by a hydrophobic cavity formed primarily by a set of residues from the same subunit as the product as well as at least one other from the dimeric partner. Furthermore, Plasmodium GGPP synthase (GGPPS) can bind nitrogen-containing bisphosphonates (N-BPs) strongly with the energetically favorable cooperation of three Mg(2+), resulting in inhibition by this class of compounds at IC(50) concentrations below 100 nM. In contrast, human and yeast GGPPSs do not accommodate a third magnesium atom in the same manner, resulting in their insusceptibility to N-BPs. This differentiation is in part attributable to a deviation in a conserved motif known as the second aspartate-rich motif: whereas the aspartates at the start and end of the five-residue motif in FFPP synthases and P. vivax GGPPSs both participate in the coordination of the third Mg(2+), an asparagine is featured as the last residue in human and yeast GGPPSs, resulting in a different manner of interaction with nitrogen-containing ligands.  相似文献   

16.
The membranes from the chromoplasts of Narcissus pseudonarcissus L. which are derived from the inner envelope membrane are the site of -carotene synthesis from [1-14C]isopentenyl diphosphate. The enzymes involved are partly peripheral membrane proteins (prenyltransferase, phytoene synthase) and partly integral membrane proteins (cis-trans isomerase, dehydrogenase(s), cyclase(s)). Metabolic channeling is suggested.Abbreviations IPP isopentenyl diphosphate - GGPP geranylgeranyl diphosphate  相似文献   

17.
Characterization of the GGPP synthase gene family in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Geranylgeranyl diphosphate (GGPP) is a key precursor of various isoprenoids that have diverse functions in plant metabolism and development. The annotation of the Arabidopsis thaliana genome predicts 12 genes to encode geranylgeranyl diphosphate synthases (GGPPS). In this study we analyzed GGPPS activity as well as the subcellular localization and tissue-specific expression of the entire protein family in A. thaliana. GGPPS2 (At2g18620), GGPPS3 (At2g18640), GGPPS6 (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 (At4g36810) showed GGPPS activity in Escherichia coli, similar to activities reported earlier for GGPPS1 (At1g49530) and GGPPS4 (At2g23800) (Zhu et al. in Plant Cell Physiol 38(3):357–361, 1997a; Plant Mol Biol 35(3):331–341, b). GGPPS12 (At4g38460) did not produce GGPP in E. coli. Based on DNA sequence analysis we propose that GGPPS5 (At3g14510) is a pseudogene. GGPPS–GFP (green fluorescent protein) fusion proteins of the ten functional GGPP synthases localized to plastids, mitochondria and the endoplasmic reticulum, with the majority of the enzymes located in plastids. Gene expression analysis using quantitative real time-PCR, GGPPS promoter-GUS (β-glucuronidase) assays and publicly available microarray data revealed a differential spatio-temporal expression of GGPPS genes. The results suggest that plastids and mitochondria are key subcellular compartments for the synthesis of ubiquitous GGPP-derived isoprenoid species. GGPPS11 and GGPPS1 are the major isozymes responsible for their biosynthesis. All remaining paralogs, encoding six plastidial isozymes and two cytosolic isozymes, were expressed in specific tissues and/or at specific developmental stages, suggesting their role in developmentally regulated isoprenoid biosynthesis. Our results show that of the 12 predicted GGPPS encoded in the A. thaliana genome 10 are functional proteins that can synthesize GGPP. Their specific subcellular location and differential expression pattern suggest subfunctionalization in providing GGPP to specific tissues, developmental stages, or metabolic pathways.  相似文献   

18.
Metabolic engineering in microbes could be used to produce large amounts of valuable metabolites that are difficult to extract from their natural sources and too expensive or complex to produce by chemical synthesis. As a step towards the production of Taxol in the yeast Saccharomyces cerevisiae, we introduced heterologous genes encoding biosynthetic enzymes from the early part of the taxoid biosynthetic pathway, isoprenoid pathway, as well as a regulatory factor to inhibit competitive pathways, and studied their impact on taxadiene synthesis. Expression of Taxus chinensis taxadiene synthase alone did not increase taxadiene levels because of insufficient levels of the universal diterpenoid precursor geranylgeranyl diphosphate. Coexpression of T. chinensis taxadiene synthase and geranylgeranyl diphosphate synthase failed to increase levels, probably due to steroid-based negative feedback, so we also expressed a truncated version of 3-hydroxyl-3-methylglutaryl-CoA reductase (HMG-CoA reductase) isoenzyme 1 that is not subject to feedback inhibition and a mutant regulatory protein, UPC2-1, to allow steroid uptake under aerobic conditions, resulting in a 50% increase in taxadiene. Finally, we replaced the T. chinensis geranylgeranyl diphosphate synthase with its counterpart from Sulfolobus acidocaldarius, which does not compete with steroid synthesis, and codon optimized the T. chinensis taxadiene synthase gene to ensure high-level expression, resulting in a 40-fold increase in taxadiene to 8.7±0.85 mg/l as well as significant amounts of geranylgeraniol (33.1±5.6 mg/l), suggesting taxadiene levels could be increased even further. This is the first demonstration of such enhanced taxadiene levels in yeast and offers the prospect for Taxol production in recombinant microbes.  相似文献   

19.
The incorporation of [1-3H] geranylgeranyl diphosphate (GGPP), [1-3H] geranylgeranyl monophosphate (GGMP) and [U-14C] phytyl diphosphate (PhPP) into chlorophylls a and b in growing tobacco cell cultures was investigated. The substrates were effectively incorporated into chlorophylls a and b, 3.2% of the total activity of applied GGPP or GGMP and 12.4% of the total activity of applied PhPP being found in chlorophylls a and b after 24 h incubation. The radioactivity was found in phytyl chlorophyllide through-out which means effective hydrogenation of the alcohol moiety in the case of GGPP and GGMP. With increasing substrate concentration, the specific radioactivity of chlorophyll increased up to a saturation level which was reached either at 20–40 M PhPP or at 60 M GGPP and GGMP. The specific radioactivity of the chlorophyll formed during the 24-h incubation period was the same as that of the applied substrate at saturating substrate concentration. The specific radioactivity of chlorophyll a was higher than that of chlorophyll b only in the case of PhPP.Abbreviations Chlide chlorophyllide a - ChlPh phytyl chloro-phyllide - ChlGG geranylgeranyl chlorophyllide a - GGPP geranylgeranyl diphosphate - GGMP geranylgeranyl monophosphate - HPLC high-performance liquid chromatography - PhPP phytyl diphosphate Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

20.
Statins, drugs commonly used to lower serum cholesterol, have been shown to stimulate osteoblast differentiation and bone formation. These effects have been attributed to the depletion of geranylgeranyl pyrophosphate (GGPP). In this study, we tested whether specific inhibition of GGPP synthase (GGPPS) with digeranyl bisphosphonate (DGBP) would similarly lead to increased osteoblast differentiation. DGBP concentration dependently decreased intracellular GGPP levels in MC3T3‐E1 pre‐osteoblasts and primary rat calvarial osteoblasts, leading to impaired Rap1a geranylgeranylation. In contrast to our hypothesis, 1 µM DGBP inhibited matrix mineralization in the MC3T3‐E1 pre‐osteoblasts. Consistent with this, DGBP inhibited the expression of alkaline phosphatase and osteocalcin in primary osteoblasts. By inhibiting GGPPS, DGBP caused an accumulation of the GGPPS substrate farnesyl pyrophosphate (FPP). This effect was observed throughout the time course of MC3T3‐E1 pre‐osteoblast differentiation. Interestingly, DGBP treatment led to activation of the glucocorticoid receptor in MC3T3‐E1 pre‐osteoblast cells, consistent with recent findings that FPP activates nuclear hormone receptors. These findings demonstrate that direct inhibition of GGPPS, and the resulting specific depletion of GGPP, does not stimulate osteoblast differentiation. This suggests that in addition to depletion of GGPP, statin‐stimulated osteoblast differentiation may depend on the depletion of upstream isoprenoids, including FPP. J. Cell. Biochem. 112: 1506–1513, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号