首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Motivation and aim

Mapping the spatial distribution of biodiversity is critical for understanding its fundamental drivers (e.g. speciation, environmental filtering) as well as for conservation assessment. An important dimension of this topic is how the distributions of subsets of species contribute to the overall distribution of biodiversity. Although studies have previously investigated the role of geographically common and rare species in determining these patterns, their respective contributions appear to vary between studies. Knowing which species contribute disproportionately to the spatial distribution of biodiversity enables the identification of key indicator species for biodiversity assessments across large areas and is important for prioritising areas for conservation actions. An extensive review of the literature was carried out to synthesise research on how geographic rarity contributes to spatial patterns of biodiversity. We identify potential explanations for the discrepancies in findings between studies and identify opportunities for further research.

Results

Many studies on the contribution of geographic commonness and rarity to the spatial distribution of biodiversity focus on species richness. A prevalent view is that common (widespread) species contribute disproportionately, although this is not ubiquitous across studies due to factors such as the geographic extent from which relative rarity is quantified. We identify research pathways that will further improve our knowledge of how geographically common and rare species shape the spatial distribution of biodiversity including the impact of spatial scale on species contributions and the incorporation of biodiversity components beyond taxonomic alpha diversity, that is functional and phylogenetic diversity.

Main conclusions

Future research should incorporate multiple biodiversity components and model scale dependency. This will further our knowledge on the underlying processes that shape the spatial variation of biodiversity across the planet and help inform biological surveys and conservation activities.  相似文献   

2.
Identifying geographical areas with the greatest representation of the tree of life is an important goal for the management and conservation of biodiversity. While there are methods available for using a single phylogenetic tree to assess spatial patterns of biodiversity, there has been limited exploration of how separate phylogenies from multiple taxonomic groups can be used jointly to map diversity and endemism. Here, we demonstrate how to apply different phylogenetic approaches to assess biodiversity across multiple taxonomic groups. We map spatial patterns of phylogenetic diversity/endemism to identify concordant areas with the greatest representation of biodiversity across multiple taxa and demonstrate the approach by applying it to the Murray–Darling basin region of southeastern Australia. The areas with significant centers of phylogenetic diversity and endemism were distributed differently for the five taxonomic groups studied (plant genera, fish, tree frogs, acacias, and eucalypts); no strong shared patterns across all five groups emerged. However, congruence was apparent between some groups in some parts of the basin. The northern region of the basin emerges from the analysis as a priority area for future conservation initiatives focused on eucalypts and tree frogs. The southern region is particularly important for conservation of the evolutionary heritage of plants and fishes.  相似文献   

3.
In the face of accelerating biodiversity loss it is more important than ever to identify important areas of biodiversity and target limited resources for conservation. We developed a method to identify areas of important plant diversity using known species’ distributions and evaluations of the species importance. We collated distribution records of vascular plants and developed a scoring method of spatial prioritisation to assign conservation value to the island of Ireland at the hectad scale (10 km × 10 km) and at the tetrad scale (2 km × 2 km) for two counties where sufficient data were available. Each plant species was assigned a species conservation value based on both its conservation status and distribution in Ireland. For each cell, the species conservation values within the cell were summed, thereby differentiating between areas of high and low conservation value across the landscape. Areas with high conservation value represent the most important areas for plant conservation.The protected area cover and the number of species present in these important areas were also examined by first defining threshold values using two different criteria. Species representation was high in the important areas; the identified important areas of plant diversity maintained high representation of species of conservation concern and achieved high species representation overall, requiring a low number of sites (<8%) to do so. The coincidence of protected areas and important areas for plant diversity was found to be low and while some important areas of plant diversity might benefit from the general protection afforded by these areas, our research highlights the need for conservation outside of protected areas.  相似文献   

4.
Climate warming affects biodiversity distribution across all ecosystems. However, beyond changes in species richness, impacts on other biodiversity components are still overlooked, particularly in the marine realm. Here we forecasted the potential effect of climate warming on the phylogenetic and functional components of coastal Mediterranean fish biodiversity. To do so, we used species distribution models to project the potential distribution of 230 coastal fish species by the end of the 21st century based on the IPCC A2 scenario implemented with the Mediterranean climatic model NEMOMED8. From these projections, we assessed the changes in phylogenetic (PD) and functional diversity (FD) of fish assemblages at multiple spatial scales using a dated molecular phylogeny and an extensive functional trait database. At the scale of the entire Mediterranean Sea, the projected extinctions of 40 coastal fish species would lead to a concomitant erosion of PD and FD (13.6 and 3%, respectively). However, a null model revealed that species loss at this scale would not lead to a disproportionate erosion of PD and FD. Similar results were found when considering fish assemblages at the grid cell scale. Indeed, at this scale, the projected changes in species richness would lead to unexpected losses of PD and FD for localized and small areas only. A disproportionate erosion of PD under climate warming was only forecasted when analysing fish assemblages at an intermediate spatial scale, namely the Mediterranean marine ecoregions. Overall, our results emphasize the importance of considering multiple spatial scales when assessing potential impacts of climate warming on the multiple components marine biodiversity.  相似文献   

5.
Aim To incorporate evolutionary processes into conservation planning using species distribution patterns and environmental gradients as surrogates for genetic diversity. Location Western Mediterranean Basin. Methods Distributions of 154 herpetological species were predicted using maximum entropy models, and groups of significantly co‐occurring species (biotic elements) were identified. Environmental gradients were characterized for the complete area and for the area covered by each biotic element, by performing a principal component analysis on the data matrix composed of nine environmental variables. The first two principal component analysis axes were classified into four categories each, and those categories were combined with each other resulting in an environmental classification with 16 categories. To identify priority conservation areas, biotic elements and environmental categories were used as surrogates for the neutral and adaptive components of genetic diversity, respectively. Priority areas for conservation were identified under three scenarios: (1) setting targets for species only; (2) setting targets for species and for each environmental category of the overall area; and (3) setting targets for each species and for each environmental category within each biotic element. Results Nine biotic elements were identified – four for the amphibians and five for the reptiles. Priority areas identified in the three scenarios were similar in terms of amount of area selected, but exhibited low spatial agreement. Main conclusions Prioritization exercises that integrate surrogates for evolutionary processes can deliver spatial priorities that are fairly different to those where only species representation is considered. While new methods are emerging to incorporate molecular data in conservation prioritization, it is unlikely to be enough data for enough taxa for this to be feasible in many regions. We develop an approach using surrogates for both the neutral and adaptive components of genetic diversity that may enhance biodiversity persistence and representation when molecular data are not available or geographically comprehensive.  相似文献   

6.
Understanding how different biodiversity components are related across different environmental conditions is a major goal in macroecology and conservation biogeography. We investigated correlations among alpha and beta taxonomic (TD), phylogenetic (PD), and functional diversity (FD) in ant communities in the five biogeographic regions most representative of western Europe; we also examined the degree of niche conservatism. We combined data from 349 ant communities composed of 154 total species, which were characterized by 10 functional traits and by phylogenetic relatedness. We computed TD, PD, and FD using the Rao quadratic entropy index, which allows each biodiversity component to be partitioned into α and β diversity within the same mathematical framework. We ran generalized least squares and multiple matrix regressions with randomization to investigate relationships among the diversity components. We used Pagel's λ test to explore niche conservatism in each biogeographic region. At the alpha scale, TD was consistently, positively related to PD and FD, although the strength and scatter of this relationship changed among the biogeographic regions. Meanwhile, PD and FD consistently matched up across regions. Accordingly, we found similar degrees of niche conservatism across regions. Nonetheless, these alpha‐scale relationships had low coefficients of determination. At the beta scale, the three diversity components were highly correlated across all regions (especially TD and FD, as well as PD and FD). Our results imply that the different diversity components, and especially PD and FD, are consistently related across biogeographic regions and analytical scale. However, the alpha‐scale relationships were quite weak, suggesting environmental factors might influence the degree of association among diversity components at the alpha level. In conclusion, conservation programs should seek to preserve functional and phylogenetic diversity in addition to species richness, and this approach should be applied universally, regardless of the biogeographic locations of the sites to be protected.  相似文献   

7.
The earth is facing a worldwide decline in biodiversity, with land-use change identified as one of the most important drivers. There is evidence that the loss of diversity has a significant impact on ecosystem functioning. Earlier research focused on species richness, but more recent, functional and phylogenetic diversity came into the picture as the stronger determinants of ecosystem processes. The effects of increasing land-use intensity on functional (FD) and phylogenetic diversity (PD), however, are still poorly understood. We studied how FD and PD are affected by land-use intensity in temperate plant communities. Our results show that land-use intensity has a clear impact on species richness, but also affects functional and phylogenetic diversity. Intensive agricultural areas fail to support high and sustainable levels of functional and phylogenetic diversity. These results highlight the need for the protection of biodiversity in nature reserves and the conservation of areas with extensive agricultural practices. Because species richness may influence the measures of functional and phylogenetic diversity, we compared the observed FD and PD values with random values generated with a matrix-swap null model. The observed discrepancy between species loss and the loss of FD and PD calls for an integrated approach to biodiversity conservation, in which the different components of biodiversity are considered together.  相似文献   

8.
系统发育多样性测度及其在生物多样性保护中的应用   总被引:2,自引:1,他引:1  
生物多样性保护面临两个基本问题:如何确定生物多样性测度以及如何保护生物多样性。传统的生物多样性测度是以物种概念为基础的,用生态学和地理学方法确定各种生物多样性指数。其测度依赖于样方面积的大小,并且所有的物种在分类上同等对待。系统发育多样性测度基于系统发育和遗传学的理论和方法,能确定某一物种对类群多样性的贡献大小。该方法比较复杂,只有在类群的系统发育或遗传资料比较齐全时方能应用。本文认为,物种生存力途径和系统发育多样性测度相结合有助于确定物种和生态系统保护的优先秩序。  相似文献   

9.
周韩洁  杨入瑄  李嵘 《广西植物》2022,42(10):1694-1702
全球气候变化与人为活动等因素导致的生物多样性丧失,引起了全球各界对生物多样性保护的高度关注。传统生物多样性保护主要对物种、特有种、受威胁物种的种类组成及其分布模式开展研究,忽视了进化历史在生物多样性保护中的作用。云南是全球生物多样性热点地区的交汇区,生物多样性的保护历来受到广泛关注,为了更好地探讨云南生物多样性的保护措施,该研究以云南被子植物菊类分支物种为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,识别生物多样性的重点保护区域。结果表明:云南被子植物菊类分支的物种、特有种及受威胁物种的物种密度与系统发育多样性均显著正相关; 通过零模型分析发现,由南向北标准化系统发育多样性逐渐降低; 云南南部、东南部、西北部是云南被子植物菊类分支的重点保护区域,加强这些区域的保护,将最大化地保护生物多样性的进化历史和进化潜能。由此可见,融合进化历史信息的植物多样性格局分析不仅有助于更加深入地理解植物多样性的形成与演变,也为生物多样性保护策略的制定提供更多的思路。  相似文献   

10.
Agricultural expansion requires mitigation to conserve biodiversity and maintain functional interactions across the transformed mosaic. Conservation outside protected areas (PAs) means providing increased spatial opportunities for populations to survive over the long-term. Here we assess the capacity of agricultural mosaics for maintaining indigenous biodiversity against the benchmark levels in neighbouring PAs. We do this in three geographical areas in the major biodiversity hotspot, the Cape Floristic Region. We focus on two functionally related groups, indigenous flowers and their associated native insects, to assess the biodiversity value of certain components of agricultural mosaics. These components include agriculturally disturbed land, semi-transformed, disturbed land, and remnant patches of natural land, as well as adjacent PAs as reference sites. Overall, species richness across the agricultural mosaics outside PAs was similar to that within PAs for insects, although more variable for plants. Nevertheless, sites outside PAs still retained great diversity of flowering plants. Across the agricultural mosaic, sites shared 20–38 % of their insect species, and 12–28 % of plant species, indicating substantial species turnover. Each particular agricultural component retained species not sampled elsewhere in the landscape, indicating that habitats outside PAs can make a significant contribution to the compositional biodiversity of an area. Our findings are positive for biodiversity conservation across these agricultural mosaics, with these semi-natural components within the production landscape, in effect, extending the size of the PAs for many species. Conservation planning should recognize the value of such agricultural mosaics.  相似文献   

11.
For sustaining ecosystem functions and services, environmental conservation strategies increasingly target to maintain the multiple facets of biodiversity, such as functional diversity (FD) and phylogenetic diversity (PD), not just taxonomic diversity (TD). However, spatial mismatches among these components of biodiversity can impose challenges for conservation decisions. Hence, understanding the drivers of biodiversity is critical. Here, we investigated the global distribution patterns of TD, FD, and PD of breeding Anatidae. Using null models, we clarified the relative importance of mechanisms that influence Anatidae community. We also developed random forest models to evaluate the effects of environmental variables on the Anatidae TD, FD, and PD. Our results showed that geographical variation in Anatidae diversity is hemispheric rather than latitudinal. In the species‐rich Northern Hemisphere (NH), the three diversity indices decreased with latitude within the tropical zone of the NH, but increased in the temperate zone reaching a peak at 44.5–70.0°N, where functional and phylogenetic clustering was a predominant feature. In the Southern Hemisphere (SH), Anatidae diversity increased poleward and a tendency to overdispersion was common. In NH, productivity seasonality and temperature in the coldest quarter were the most important variables. Productivity seasonality was also the most influential predictor of SH Anatidae diversity, along with peak productivity. These findings suggested that seasonality and productivity, both consistent with the energy‐diversity hypothesis, interact with the varying histories to shape the contrasting hemispheric patterns of Anatidae diversity. Phylogenetic diversity (PD) and FD underdispersion, widespread across the species‐rich, seasonally productive mid‐to‐high latitudes of the NH, reflects a rapid evolutionary radiation and resorting associated with Pleistocene cycles of glaciation. The SH continents (and southern Asia) are characterized by a widespread tendency toward PD and FD overdispersion, with their generally species‐poor communities comprising proportionately more older lineages in thermally more stable but less predictably productive environments.  相似文献   

12.
Phylogenetic diversity (PD) is an important measure for identifying areas of conservation. Phylogenetic diversity is a robust biodiversity metric because it accounts for the relationships among species, and not just the number of species. For this reason, it is an essential element for conservation planning. Unfortunately, PD metrics are not used by many for conservation planning. In the case of Colombia, which is rich in crop and wild plant biodiversity, lacks information on genetic resources of Crop Wild Relatives (CWR). Due to deforestation and agriculture expansion, the habitat, where these crop wild relatives grow, is being reduced at an alarming rate and could be destroyed altogether. This study focuses on crop wild relatives in Colombia, comparing species diversity versus PD-based metrics to show the advantages of using evolutionary information for conservation planning. We identified new areas with high PD and endemism among CWR diversity which are important to establishing comprehensive conservation strategies.  相似文献   

13.
The phylogenetic diversity measure, (‘PD’), measures the relative feature diversity of different subsets of taxa from a phylogeny. At the level of feature diversity, PD supports the broad goal of biodiversity conservation to maintain living variation and option values. PD calculations at the level of lineages and features include those integrating probabilities of extinction, providing estimates of expected PD. This approach has known advantages over the evolutionarily distinct and globally endangered (EDGE) methods. Expected PD methods also have limitations. An alternative notion of expected diversity, expected functional trait diversity, relies on an alternative non-phylogenetic model and allows inferences of diversity at the level of functional traits. Expected PD also faces challenges in helping to address phylogenetic tipping points and worst-case PD losses. Expected PD may not choose conservation options that best avoid worst-case losses of long branches from the tree of life. We can expand the range of useful calculations based on expected PD, including methods for identifying phylogenetic key biodiversity areas.  相似文献   

14.
As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse‐resolution velocity metrics can be combined with fine‐resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro‐ and microrefugia that in combination maximize both transient and long‐term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.  相似文献   

15.
本文以云南被子植物蔷薇分支为研究对象,基于物种间的演化关系,结合其地理分布,从进化历史的角度探讨了物种、特有种、受威胁物种的种类组成及系统发育组成的分布格局,并整合自然保护地的空间分布,对生物多样性的重点保护区域进行识别。结果显示:云南被子植物蔷薇分支的物种密度与系统发育多样性、特有种密度、受威胁物种密度均呈显著正相关,云南南部和西北部是物种丰富度与系统发育多样性最为丰富的区域;就云南整体而言,蔷薇分支的标准化系统发育多样性较低;云南南部、东南部、西北部是蔷薇分支的重点保护区域。  相似文献   

16.

Aim

Comprehensive biodiversity protection necessitates the consideration of multiple indexes of diversity, and how the distribution patterns of priority areas may shift under climate change. Galliformes is a globally endangered avian order vulnerable to climate change that provide an important indicator for wildlife conservation effectiveness. Here, we identified priority areas for conserving Galliformes taxonomic, phylogenetic, and functional diversity in China and their spatial dynamics subject to climate change, and examined how well existing protected areas align with current and future priority areas.

Location

China.

Methods

We applied species distribution modelling and Zonation algorithms to identify conservation priority area dynamics for 47 galliform species across three biodiversity indexes subject to three future climate change scenarios to 2050s and 2070s. We overlaid these identified priority areas onto existing national nature reserves and national parks to assess and project their effectiveness.

Results

Current priority areas proved spatially incongruent between indexes, with an optimal area overlap comprising just 10.3% of China's land area, lying largely outside of existing protected areas. Furthermore, over 80% of modelled optimal priority areas currently lacked formal conservation status. Future priority areas will shift substantially under climate change, to an extent dependent on greenhouse gas emission scenarios. Nevertheless, we identified five large regions where optimal Galliformes diversity indexes should remain stable under all scenarios, thus providing potential climatic refugia, if protected from human encroachment.

Main Conclusions

The current deficits we identified for Galliformes protection in China resonate with a broader need for hierarchical conservation strategic planning across regions and ecosystems to ensure long-term biodiversity protection, accommodating for climate change.  相似文献   

17.
The California Floristic Province harbours more endemic plant and animal taxa and more identifiable subspecies than any other area of comparable size in North America. We present evidence that physical historical processes have resulted in congruent patterns of genetic diversity over the past 2-10 million years. Using a molecular clock approach we show that diversification and establishment of spatial genetic structure across six taxonomic groups coincide with the putative age of California's mountain ranges and aridification in the region. Our results demonstrate the importance of geographical barriers and climatological events to species diversification and the overall geographical structure of biodiversity. These results should facilitate conservation efforts in this biodiversity hotspot for taxa whose population genetic structure is still unknown and may suggest the potential utility of this approach in regional conservation planning efforts.  相似文献   

18.
The combination of rapid biodiversity loss and limited funds available for conservation represents a major global concern. While there are many approaches for conservation prioritization, few are framed as financial optimization problems. We use recently published avian data to conduct a global analysis of the financial resources required to conserve different quantities of phylogenetic diversity (PD). We introduce a new prioritization metric (ADEPD) that After Downlisting a species gives the Expected Phylogenetic Diversity at some future time. Unlike other metrics, ADEPD considers the benefits to future PD associated with downlisting a species (e.g. moving from Endangered to Vulnerable in the International Union for Conservation of Nature Red List). Combining ADEPD scores with data on the financial cost of downlisting different species provides a cost–benefit prioritization approach for conservation. We find that under worst-case spending $3915 can save 1 year of PD, while under optimal spending $1 can preserve over 16.7 years of PD. We find that current conservation spending patterns are only expected to preserve one quarter of the PD that optimal spending could achieve with the same total budget. Maximizing PD is only one approach within the wider goal of biodiversity conservation, but our analysis highlights more generally the danger involved in uninformed spending of limited resources.  相似文献   

19.
Understanding patterns of biodiversity in deep sea systems is increasingly important because human activities are extending further into these areas. However, obtaining data is difficult, limiting the ability of science to inform management decisions. We have used three different methods of quantifying biodiversity to describe patterns of biodiversity in an area that includes two marine reserves in deep water off southern Australia. We used biological data collected during a recent survey, combined with extensive physical data to model, predict and map three different attributes of biodiversity: distributions of common species, beta diversity and rank abundance distributions (RAD). The distribution of each of eight common species was unique, although all the species respond to a depth-correlated physical gradient. Changes in composition (beta diversity) were large, even between sites with very similar environmental conditions. Composition at any one site was highly uncertain, and the suite of species changed dramatically both across and down slope. In contrast, the distributions of the RAD components of biodiversity (community abundance, richness, and evenness) were relatively smooth across the study area, suggesting that assemblage structure (i.e. the distribution of abundances of species) is limited, irrespective of species composition. Seamounts had similar biodiversity based on metrics of species presence, beta diversity, total abundance, richness and evenness to the adjacent continental slope in the same depth ranges. These analyses suggest that conservation objectives need to clearly identify which aspects of biodiversity are valued, and employ an appropriate suite of methods to address these aspects, to ensure that conservation goals are met.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号