首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the time-dependent effects of conditional expression of neutrophil inhibitory factor (NIF), a specific 41-kDa CD18 integrin antagonist, on the time course of NIF expression and lung PMN (polymorphonuclear leukocyte) infiltration and vascular injury in a model of Escherichia coli-induced sepsis in mice. Studies were made in mice transduced with the E-selectin (ES) promoter-NIF construct (using liposomes) in which the NIF cDNA was driven by the inflammation- and endothelial cell-specific ES promoter. We observed time-dependent expression of NIF in pulmonary vascular endothelium that paralleled the ES expression. Expression of both was evident at 1 h after E. coli challenge, peaked at 3-6 h, and returned to basal level within 48 h. We observed that increases in PMN uptake and transalveolar PMN migration induced by E. coli challenge were reversed in a time-dependent manner following NIF expression in mice. NIF expression also prevented the progression of lung vascular injury and edema formation following E. coli challenge. Thus the conditional expression of NIF using the ES promoter can reverse, in a time-dependent manner, lung PMN infiltration and vascular injury induced by gram-negative sepsis. The results support the model that initial engagement of CD18 integrins enables the further recruitment of additional PMN into lung tissues such that PMN continue to sequester and migrate after E. coli challenge.  相似文献   

2.
The in vivo contributions of CD18 integrin-dependent and -independent mechanisms in mediating the increases in lung neutrophil (polymorphonuclear leukocyte; PMN) sequestration and microvascular permeability are not well understood. We determined the time course of these responses to Gram-negative sepsis in the mouse lung and addressed the specific contributions of CD18 integrins and ICAM-1. PMN sequestration in the lung was assessed by morphometric analysis, and transalveolar PMN migration was assessed by bronchoalveolar lavage. Lung tissue PMN number increased by 6-fold within 1 h after i.p. Escherichia coli challenge; this value peaked at 3 h (7-fold above control) and decreased at 12 h (3.5-fold above control). PMN migration into the airspace was delayed; the value peaked at 6 h and remained elevated up to 12 h. Saturating concentrations of anti-CD18 and anti-ICAM-1 mAbs reduced lung tissue PMN sequestration and migration; however, peak responses at 3 and 6 h were inhibited by 40%, indicating that only a small component of PMN sequestration and migration was CD18 dependent at these times. In contrast to the time-dependent decreased role of CD18 integrins in mediating PMN sequestration and migration, CD18 and ICAM-1 blockade prevented the increase in lung microvascular permeability and edema formation at all times after E. coli challenge. Thus, Gram-negative sepsis engages CD18/ICAM-1-independent mechanisms capable of the time-dependent amplification of lung PMN sequestration and migration. The increased pulmonary microvascular permeability induced by E. coli is solely the result of engagement of CD18 integrins even when PMN accumulation and migration responses are significantly CD18 independent.  相似文献   

3.
CD47 modulates neutrophil transmigration toward the sites of infection or injury. Mice lacking CD47 are susceptible to Escherichia coli (E. coli) peritonitis. However, less is known concerning the role of CD47 in the development of acute lung inflammation and injury. In this study, we show that mice lacking CD47 are protected from LPS-induced acute lung injury and E. coli pneumonia with a significant reduction in pulmonary edema, lung vascular permeability, and bacteremia. Reconstitution of CD47(+/-) mice with CD47(-/-) neutrophils significantly reduced lung edema and neutrophil infiltration, thus demonstrating that CD47(+) neutrophils are required for the development of lung injury from E. coli pneumonia. Importantly, CD47-deficient mice with E. coli pneumonia had an improved survival rate. Taken together, deficiency of CD47 protects mice from LPS-induced acute lung injury and E. coli pneumonia. Targeting CD47 may be a novel pathway for treatment of acute lung injury.  相似文献   

4.
We addressed the in vivo role of phosphatidylinositol 3-kinase-gamma (PI3K-gamma) in signaling the sequestration of polymorphonuclear leukocytes (PMNs) in lungs and in the mechanism of inflammatory lung vascular injury. We studied mice with deletion of the p110 catalytic subunit of PI3K-gamma (PI3K-gamma(-/-) mice). We measured lung tissue PMN sequestration, microvascular permeability, and edema formation after bacteremia induced by intraperitoneal Escherichia coli challenge. PMN infiltration into the lung interstitium in PI3K-gamma(-/-) mice as assessed morphometrically was increased 100% over that in control mice within 1 h after bacterial challenge. PI3K-gamma(-/-) mice also developed a greater increase in lung microvascular permeability after E. coli challenge, resulting in edema formation. The augmented lung tissue PMN sequestration in PI3K-gamma(-/-) mice was associated with increased expression of the PMN adhesive proteins CD47 and beta(3)-integrins. We observed increased association of CD47 and beta(3)-integrins with the extracellular matrix protein vitronectin in lungs of PI3K-gamma(-/-) mice after E. coli challenge. PMNs from these mice also showed increased beta(3)-integrin expression and augmented beta(3)-integrin-dependent PMN adhesion to vitronectin. These results point to a key role of PMN PI3K-gamma in negatively regulating CD47 and beta(3)-integrin expression in gram-negative sepsis. PI3K-gamma activation in PMNs induced by E. coli may modulate the extent of lung tissue PMN sequestration secondary to CD47 and beta(3)-integrin expression. Therefore, the level of PI3K-gamma activation may be an important determinant of PMN-dependent lung vascular injury.  相似文献   

5.
Neutrophil (PMN) migration in the systemic and pulmonary circulation of rabbits was compared by using different inflammatory stimuli to determine the role of the leukocyte adhesion complex, CD11/CD18, in each of these vascular beds. The adhesion complex was blocked by administering the anti-CD18 mAb 60.3. The data show that mAb 60.3 blocks PMN emigration into inflammatory foci in the abdominal wall produced by implanting sponges containing either hydrochloric acid, Streptococcus pneumoniae, Escherichia coli endotoxin, or PMA. mAb 60.3 also inhibited PMN emigration in response to peritoneal instillation of S. pneumoniae. The effect of mAb 60.3 on PMN emigration in the lungs varied depending upon the stimulus. PMN failed to migrate into the PMA-induced pneumonia; however, mAb 60.3 pretreatment only partially inhibited endotoxin-induced pneumonia and did not inhibit S. pneumoniae or hydrochloric acid-induced pneumonias. PMN lavaged from the alveolar spaces in the Streptococcal pneumonia had similar quantities of mAb 60.3 bound to their surfaces as the circulating PMN. We conclude that the CD11/CD18 complex mediates PMN adherence in the systemic circulation. However, PMN adherence in the pulmonary circulation may occur by either CD18-dependent or -independent mechanisms that are specific to the inciting stimulus.  相似文献   

6.
The roles of beta 2 integrin molecules in neutrophil accumulation and tissue injury have been examined by the use of antibodies that are reactive with human CD11b and CD18 and cross-react with the homologous epitopes on rat neutrophils. Adherence to rat pulmonary artery endothelial cells by human neutrophils and endothelial cell killing by phorbol ester-activated human neutrophils required CD11b, CD11c, and CD18. Companion adherence studies between rat neutrophils and endothelial cells revealed a requirement for both CD11b and CD18. Neither anti-CD11b nor anti-CD18 depressed in vitro responses (O2- generation and chemotactic migration) of rat neutrophils. The accumulation of neutrophils in glycogen-induced peritoneal exudates was diminished substantially in rats treated with either anti-CD18 or anti-CD11b. In oxidant-mediated acute lung injury induced by rapid intravascular infusion of cobra venom factor, treatment of rats with either anti-CD18 or anti-CD11b significantly attenuated injury as assessed by increases in vascular permeability and hemorrhage. These protective effects correlated morphologically with diminished adhesion of neutrophils to interstitial intrapulmonary capillary endothelial cells. In studies of immune complex (BSA-anti-BSA)-induced alveolitis and dermal vasculitis, anti-CD18 had protective effects at all doses of anti-BSA employed. The protective effects of anti-CD18 correlated with diminished neutrophil accumulation in tissues at lower doses of anti-BSA. Although anti-CD11b was not effective under the same experimental conditions, intratracheal administration of this antibody conveyed protection against immune complex-induced lung injury, suggesting that both CD11b and CD18 are required for the full expression of injury. The current studies also demonstrated that when surface-bound IgG immune complexes were treated with fresh rat serum, the increment in O2- and TNF alpha generated by alveolar macrophages was suppressed by anti-CD18, but not by anti-CD11b, suggesting a heretofore unrecognized role for CD18 in the O2- and TNF-alpha responses of alveolar macrophages. Thus, neutrophil beta 2 integrins play a requisite role for the full expression of complement-dependent and oxygen radical-mediated injury of the lung and dermal vasculature.  相似文献   

7.
The role of the CD18 complex of leukocyte glycoproteins in adhesion-dependent functions of human leukocytes in vitro has been well documented. A ligand, intercellular adhesion molecule-1 (ICAM-1), for at least one member of the CD18 complex has been identified. This molecule is inducible on many cell types including vascular endothelium and keratinocytes by inflammatory mediators such as IL-1, TNF, and IFN-gamma. ICAM-1 has been shown to mediate, in part, the in vitro adhesion of lymphocytes and neutrophils to endothelial cells expressing ICAM-1. In the present study we have shown that mAb's to the human CD18 complex and to human ICAM-1 cross react with rabbit cells and that both anti-CD18 and anti-CD11b but neither anti-CD11a nor anti-ICAM-1 mAb's inhibit neutrophil migration, an adhesion-dependent function, in vitro. Pretreatment of rabbits with anti-CD18 and anti-ICAM-1 but not anti-CD11a mAb inhibited by greater than 60% neutrophil migration into PMA-induced inflamed rabbit lungs. This effect of anti-ICAM-1 mAb on pulmonary neutrophil influx after PMA injection has important implications. Specifically, that ICAM-1 can function as a ligand for CD18 and can mediate, at least in part, the migration of neutrophils to inflammatory sites.  相似文献   

8.
The objective of this study was to quantitatively assess changes in cell adhesion molecule (CAM) expression on the pulmonary endothelial surface during hyperoxia and to assess the functional significance of those changes on cellular trafficking and development of oxygen-induced lung injury. Mice were placed in >95% O(2) for 0-72 h, and pulmonary injury and neutrophil (PMN) sequestration were assessed. Specific pulmonary CAM expression was quantified with a dual-radiolabeled MAb technique. To test the role of CAMs in PMN trafficking during hyperoxia, blocking MAbs to murine P-selectin, ICAM-1, or platelet-endothelial cell adhesion molecule-1 (PECAM-1) were injected in wild-type mice. Mice genetically deficient in these CAMs and PMN-depleted mice were also evaluated. PMN sequestration occurred within 8 h of hyperoxia, although alveolar emigration occurred later (between 48 and 72 h), coincident with rapid escalation of the lung injury. Hyperoxia significantly increased pulmonary uptake of radiolabeled antibodies to P-selectin, ICAM-1, and PECAM-1, reflecting an increase in their level on pulmonary endothelium and possibly sequestered blood cells. Although both anti-PECAM-1 and anti-ICAM-1 antibodies suppressed PMN alveolar influx in wild-type mice, only mice genetically deficient in PECAM-1 showed PMN influx suppression. Neither CAM blockade, nor genetic deficiency, nor PMN depletion attenuated lung injury. We conclude that early pulmonary PMN retention during hyperoxia is not temporally associated with an increase in endothelial CAMs; however, subsequent PMN emigration into the alveolar space may be supported by PECAM-1 and ICAM-1. Blocking PMN recruitment did not prevent lung injury, supporting dissociation between PMN infiltration and lung injury during hyperoxia in mice.  相似文献   

9.
The recruitment of polymorphonuclear leukocytes (PMNs) from the vascular space into the lung interstitium and airspace is an early step in the host innate immune response to bacterial invasion of these sites. To determine the ability of intact bacteria to directly elicit PMN migration across an endothelial monolayer, we studied in vitro migration of PMNs across a monolayer of human pulmonary microvascular endothelial cells in response to Streptococcus pneumoniae, Staphylococcus aureus, and Escherichia coli, as well as to purified E. coli LPS. Bacterial induction of PMN migration was dose dependent and elicited by > or =10(4) bacteria/ml of each of the species tested. Pretreatment of PMNs with blocking Abs to CD18 significantly inhibited migration of PMN in response to all stimuli tested, but had the most profound effect on migration to S. pneumoniae and S. aureus. Intact E. coli were 10 times more potent in inducing transmigration of PMNs than a corresponding amount of purified LPS. Bacterial induction of PMN migration did not correlate with up-regulation of surface endothelial ICAM-1 expression (purified LPS > intact E. coli > S. aureus and S. pneumoniae) nor up-regulation of VCAM-1 and E-selectin. Neutralizing Ab to ICAM-1 had no effect on PMN migration to any of the bacteria or to purified LPS. These findings demonstrate that diverse bacterial pathogens induce PMN migration across a pulmonary microvascular endothelial cell monolayer in a fashion that appears to be organism specific. In addition, intact bacteria elicit PMN-endothelial cell interactions distinct from those seen when purified bacterial products are used as agonists.  相似文献   

10.
We observed that the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L- phenylalanine (FMLP) induced pulmonary edema when polymorphonuclear leukocytes (PMNs) were added to isolated constant-flow buffer-perfused rabbit lungs. This study was designed to test the hypothesis that PMNs activated by FMLP induced lung injury by the modulation of reactive oxygen species (ROS), cyclooxygenase products, or cysteinyl leukotrienes (LTs). Addition of FMLP alone did not increase microvascular permeability (Kf). When PMNs were added to the isolated lung, FMLP caused an 80% increase in Kf. Wet-to-dry weight ratio was also significantly increased with PMNs + FMLP compared with FMLP only. There was a significant positive correlation between total myeloperoxidase activity in lung tissue and Kf values after FMLP (30 min). Pretreatment with two dissimilar cyclooxygenase inhibitors, meclofenamate or ibuprofen, had no effect on the PMN + FMLP-induced increase in Kf. However, the ROS inhibitor catalase and the nonantioxidant LT synthesis blocker MK 886 inhibited the PMN + FMLP increase in Kf. Perfusate levels of LTs (LTC4, -D4, and -E4) were significantly increased from baseline values 30 min after FMLP. Both MK 886 and catalase suppressed the elevation of LTs after PMN + FMLP. These results indicate that FMLP increased a pulmonary microvascular permeability in isolated buffer-perfused rabbit lungs that is PMN dependent and mediated by LT produced possibly by a result of ROS production.  相似文献   

11.
Polymorphonuclear leukocytes (PMN) play an important role in ventilator-induced lung injury (VILI), but the mechanisms of pulmonary PMN recruitment, particularly early intravascular PMN sequestration during VILI, have not been elucidated. We investigated the physiological and molecular mechanisms of pulmonary PMN sequestration in an in vivo mouse model of VILI. Anesthetized C57/BL6 mice were ventilated for 1 h with high tidal volume (injurious ventilation), low tidal volume and high positive end-expiratory pressure (protective ventilation), or normal tidal volume (control ventilation). Pulmonary PMN sequestration analyzed by flow cytometry of lung cell suspensions was substantially enhanced in injurious ventilation compared with protective and control ventilation, preceding development of physiological signs of lung injury. Anesthetized, spontaneously breathing mice with continuous positive airway pressure demonstrated that raised alveolar pressure alone does not induce PMN entrapment. In vitro leukocyte deformability assay indicated stiffening of circulating leukocytes in injurious ventilation compared with control ventilation. PMN sequestration in injurious ventilation was markedly inhibited by administration of anti-L-selectin antibody, but not by anti-CD18 antibody. These results suggest that mechanical ventilatory stress initiates pulmonary PMN sequestration early in the course of VILI, and this phenomenon is associated with stretch-induced inflammatory events leading to PMN stiffening and mediated by L-selectin-dependent but CD18-independent mechanisms.  相似文献   

12.
To determine the role of endogenous tumor necrosis factor (TNF) α on neutrophil influx into the lungs in acute Pseudomonas aeruginosa pneumonia, we evaluated TNF α activity, inflammatory cell response and neutrophil chemotactic activity in the bronchoalveolar lavage fluids (BALFs) of P. aeruginosa-infected mice. In the case of fatal pneumonia, the TNF α activity in the BALFs appeared within 3 hr, peaked at 6–12 hr and attenuated within 24 hr after intratracheal challenging, while no TNF α activity was detected in the plasma. The elevation of TNF α activity in the BALFs was closely associated with neutrophil accumulation. Mirroring the TNF α activity response and the influx of neutrophils into the murine airway, the number of neutrophils in the BALFs increased within 3 hr, peaked at 6–12 hr and remained elevated up to 24 hr after challenging. Neutralization of the TNF α activity in the BALFs with anti-murine TNF antiserum decreased the level of neutrophil migration by BALF 45.0–49.7% at 6 hr and 49.3–54.2% at 12 hr, while the neutralizing antiserum had no effect on the level of neutrophil migration by BALFs at 3 and 24 hr. Furthermore, the intravenous administration of anti-murine TNF antiserum 2 hr before challenging significantly inhibited neutrophil migration into the lungs of mice with sublethal pneumonia (P < 0.05; compared with mice receiving pre-immune serum). These data suggest that intra-alveolar TNF α plays an important role in causing lung neutrophil accumulation at the mid-phase of murine P. aeruginosa pneumonia.  相似文献   

13.
Expression of endothelial and leukocyte cell adhesion molecules is a principal determinant of polymorphonuclear neutrophil (PMN) recruitment during inflammation. It has been demonstrated that pharmacological inhibition of these molecules can attenuate PMN influx and subsequent tissue injury. We determined the temporal expression of alpha-granule membrane protein-40 (P-selectin), endothelial leukocyte adhesion molecule 1 (E-selectin), and intercellular cell adhesion molecule 1 (ICAM-1) after coronary artery occlusion and up to 3 days of reperfusion. The expression of all of these cell adhesion molecules peaked around 24 h of reperfusion. We determined the extent to which these molecules contribute to PMN infiltration by utilizing mice deficient (-/-) in P-selectin, E-selectin, ICAM-1, and CD18. Each group underwent 30 min of in vivo, regional, left anterior descending (LAD) coronary artery ischemia and 24 h of reperfusion. PMN accumulation in the ischemic-reperfused (I/R) zone was assessed using histological techniques. Deficiencies of P-selectin, E-selectin, ICAM-1, or CD18 resulted in significant (P < 0.05) attenuation of PMN infiltration into the I/R myocardium (MI/R). In addition, P-selectin, E-selectin, ICAM-1, and CD18 -/- mice exhibited significantly (P < 0.05) smaller areas of necrosis after MI/R compared with wild-type mice. These data demonstrate that MI/R induces coronary vascular expression of P-selectin, E-selectin, and ICAM-1 in mice. Furthermore, genetic deficiency of P-selectin, E-selectin, ICAM-1, or CD18 attenuates PMN sequestration and myocardial injury after in vivo MI/R. We conclude that P-selectin, E-selectin, ICAM-1, and CD18 are involved in the pathogenesis of MI/R injury in mice.  相似文献   

14.
The adult respiratory distress syndrome and bacterial pneumonia are both characterized by an influx of neutrophils into the lung. The neutrophil has been implicated as having a "pathological" role in adult respiratory distress syndrome, in contrast to its role in bacterial pneumonia. We hypothesized that processes resulting in neutrophil recruitment to the lung are distinct, depending on whether the inflammatory stimulus arises in the intravascular or the alveolar compartment of the lung. Anesthetized sheep with lung lymph fistulas were utilized to access the three compartments of the lung relevant to studies of transpulmonary neutrophil migration. Serum, lung lymph, and bronchoalveolar lavage fluid were studied for neutrophil influx and chemotactic activity before and after administration of endotoxin by either an intravascular or inhaled alveolar route. Both groups developed significant neutrophil influx into the lymph and bronchoalveolar lavage fluid by 3 h postendotoxin. Those animals receiving intravascular endotoxin developed chemotactic gradients opposing neutrophil migration into the lung in contrast to animals receiving alveolar endotoxin, suggesting that neutrophil influx into the lung occurs by random migration.  相似文献   

15.
Receptor for advanced glycation endproducts (RAGE) is an Ig superfamily cell surface receptor that interacts with a diverse array of ligands associated with inflammatory responses. In this study, we provide evidence demonstrating that RAGE is involved in inflammatory responses in the intestines. We showed that RAGE is expressed in intestinal epithelial cells, primarily concentrated at the lateral membranes close to the apical cell junction complexes. Although RAGE expression was low in epithelium under normal conditions, this protein was up-regulated after treatment with the inflammatory cytokines IFN-gamma and/or TNF-alpha. RAGE expression was also elevated in colon tissue samples from patients with inflammatory bowel diseases. Using in vitro transmigration assays, we found that RAGE mediates neutrophil (polymorphonuclear leukocytes (PMN)) adhesion to, and subsequent migration across, intestinal epithelial monolayers. This activity appears to be mediated by the binding of RAGE to the PMN-specific beta(2) integrin CD11b/CD18. Thus, these results provide a novel mechanism for the regulation of PMN transepithelial migration and may suggest a new therapeutic target for intestinal inflammation.  相似文献   

16.
17.
Our objective was to study the influence of HIV infection of polymorphonuclear leukocytes (PMN) on transepithelial migration. To date, reports of functional PMN chemotaxis in AIDS are contradictory. This is the first attempt to assess this function via an in vitro model allowing transmigration of neutrophils through an intestinal epithelial barrier. PMN were isolated from 45 HIV-infected patients and 45 healthy volunteers. PMN transmigration across T84 epithelial cells was initiated by applying either various concentrations of formyl-met-leu-phe peptide (f-MLP) or interleukin-8 and assayed by quantification of myeloperoxidase activity. CD11b, CD18, and CD47 expression on PMN was compared before and after transepithelial migration by flow cytometry analysis. CD11b expression was studied by electron microscopy. Apoptosis of transmigrated HIV PMN and control PMN was investigated by morphology and DNA fragmentation characterization. Compared to control PMN, HIV PMN exhibited a decrease in transepithelial migration that directly correlated with CD4+ counts. Basal and transepithelial migration-mediated expression of CD11b, CD18, and CD47 were unmodified in HIV PMN compared to control PMN. Electron microscopy labeling confirmed no difference in CD11b expression on HIV and control PMN. The index of apoptosis in transmigrated HIV PMN and control PMN was identical. These data provide evidence of a defect in the f-MLP-induced chemotaxis of PMN from HIV-infected patients across an intestinal epithelial barrier. This defective migration is not due to a quantitative modification of CD11b, CD18 and CD47 on HIV PMN suggesting a more subtle alteration. The impairment in the transmigration function may contribute in vivo to an increased susceptibility to intestinal bacterial infection in HIV-infected patients.  相似文献   

18.
Neutrophils and T cells play an important role in host protection against pulmonary infection caused by Streptococcus pneumoniae. However, the role of the integrins in recruitment of these cells to infected lungs is not well understood. In this study we used the twin approaches of mAb blockade and gene-deficient mice to investigate the relative impact of specific integrins on cellular recruitment and bacterial loads following pneumococcal infection. We find that both Mac-1 (CD11b/CD18) and α(4)β(1) (CD49d/CD29) integrins, but surprisingly not LFA-1 (CD11a/CD18), contribute to two aspects of the response. In terms of recruitment from the circulation into lungs, neutrophils depend on Mac-1 and α(4)β(1), whereas the T cells are entirely dependent on α(4)β(1). Second, immunohistochemistry results indicate that adhesion also plays a role within infected lung tissue itself. There is widespread expression of ICAM-1 within lung tissue. Use of ICAM-1(-/-) mice revealed that neutrophils make use of this Mac-1 ligand, not for lung entry or for migration within lung tissue, but for combating the pneumococcal infection. In contrast to ICAM-1, there is restricted and constitutive expression of the α(4)β(1) ligand, VCAM-1, on the bronchioles, allowing direct access of the leukocytes to the airways via this integrin at an early stage of pneumococcal infection. Therefore, integrins Mac-1 and α(4)β(1) have a pivotal role in prevention of pneumococcal outgrowth during disease both in regulating neutrophil and T cell recruitment into infected lungs and by influencing their behavior within the lung tissue itself.  相似文献   

19.
Transepithelial migration of neutrophils (PMN) is a defining characteristic of active inflammatory states of mucosal surfaces. The process of PMN transepithelial migration, while dependent on the neutrophil beta 2 integrin CD11b/CD18, remains poorly understood. In these studies, we define a monoclonal antibody, C5/D5, raised against epithelial membrane preparations, which markedly inhibits PMN migration across polarized monolayers of the human intestinal epithelial cell line T84 in a bidirectional fashion. In T84 cells, the antigen defined by C5/D5 is upregulated by epithelial exposure to IFN-gamma, and represents a membrane glycoprotein of approximately 60 kD that is expressed on the basolateral membrane. While transepithelial migration of PMN was markedly inhibited by either C5/D5 IgG or C5/D5 Fab fragments, the antibody failed to inhibit both adhesion of PMN to T84 monolayers and adhesion of isolated T84 cells to the purified PMN integrin, CD11b/CD18. Thus, epithelial-PMN interactions blocked by C5/D5 appear to be downstream from initial CD11b/CD18-mediated adhesion of PMN to epithelial cells. Purification, microsequence analysis, and cross-blotting experiments indicate that the C5/D5 antigen represents CD47, a previously cloned integral membrane glycoprotein with homology to the immunoglobulin superfamily. Expression of the CD47 epitope was confirmed on PMN and was also localized to the basolateral membrane of normal human colonic epithelial cells. While C5/D5 IgG inhibited PMN migration even in the absence of epithelial, preincubation of T84 monolayers with C5/D5 IgG followed by antibody washout also resulted in inhibition of transmigration. These results suggest the presence of both neutrophil and epithelial components to CD47-mediated transepithelial migration. Thus, CD47 represents a potential new therapeutic target for downregulating active inflammatory disease of mucosal surfaces.  相似文献   

20.
Neutrophils (PMN) are short-lived cells but their survival is often prolonged in inflammation. The beta2 (CD11/CD18) integrins are involved in PMN migration into inflammation but their role in PMN survival is not well understood. We investigated the role of beta2 integrins in PMN caspase activation, a key enzyme cascade in apoptosis. After 20 h, caspase activation (Western blotting) was markedly decreased in PMN cultured on fibrinogen, a ligand for Mac-1 (CD11b/CD18), but not on fibronectin or albumin. In the presence of TNF-alpha or endotoxin (LPS), blockade of CD18 (beta2 chain) with mAb markedly increased caspase activation in PMN on fibrinogen. PMN which migrated through endothelium in vitro in response to TNF-alpha, LPS, IL-1alpha, IL-8 or C5a contained 58% fewer active caspase positive PMN after 20 h than non-migrated PMN remaining on the endothelium. When beta2 (CD18) integrin or lymphocyte function antigen (LFA)-1 (CD11a) plus Mac1 (CD11b) were blocked by mAb (intact or Fab'), the proportion of migrated PMN (but not of non-migrated PMN) with active caspases was significantly increased (2-4-fold) and this was associated with accelerated PMN apoptosis and death. Thus, engagement of ligands on extracellular matrix and endothelium by the beta2 integrins Mac-1 and LFA-1 plays a role in delaying apoptosis in PMN recruited in response to LPS and TNF-alpha. Inhibition of beta2 integrin function may not only inhibit PMN infiltration, but also accelerate PMN clearance from inflamed tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号