首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
目的:分离克隆并鉴定巴斯德毕赤酵母表达系统中甘油阻遏相关基因。方法:PCR扩增LacZ基因,克隆至pPLC9载体,构建pPIC9-LacZ表达载体,经Sal I线性化后转化巴斯德毕赤酵母GS115,构建GS115-LacZ模式菌株;用限制酶介导整合(REMI)技术使GS115-LacZ菌体基因组产生随机突变,筛选甘油去阻遏的GS115-LacZ△菌体;Southern blot鉴定GS115-LacZ△基因组,用质粒拯救技术和TAIL-PCR克隆未知基因序列并测序。结果:得到甘油去阻遏的GS115-LacZ△菌体,经Southern blot分析,突变仅发生在1个基因中;通过质粒拯救和TAIL-PCR,分离得到阻遏相关基因GR1,共2863bp,经在线BLAST,发现其编码一种过氧化物酶体自吞噬相关蛋白。结论:分离得到阻遏相关基因GR1,与过氧化物酶体自吞噬相关,提示过氧化物酶体自吞噬相关基因可能对醇氧化酶启动子AOX1的转录活性有影响。  相似文献   

2.
过氧化物酶体是细胞中一种重要的细胞器。过氧化物酶体在细胞功能的发挥和人体健康方面有着重要作用。目前,以酵母过氧化物酶体为模型,研究过氧化物酶体的形成机制是研究热点。从过氧化物酶体起源、生成方式介绍最新研究进展,总结在酵母细胞中参与过氧化物酶体形成的必需基因(pex),及其编码Peroxin蛋白在过氧化物酶体形成过程中的作用,阐述酵母过氧化物酶体的形成途径和形成机制,展望了研究前景。  相似文献   

3.
目的:克隆辣根过氧化物酶同工酶C基因,为此基因的表达作准备。方法:用PCR方法从辣根的总DNA中扩增得到一种辣根过氧化物酶同工酶C基因HRPC2,通过PCR的方法去除内含子后连接到pMD18-T载体上,测序证明正确后,用限制性内切酶切下目的基因,插入到巴斯德毕赤酵母表达载体pPIC9K中,构建成重组质粒pC2EX9K。再将辣根过氧化物酶同工酶C基因在毕赤酵母中进行克隆、鉴定。结果:重组质粒pC2EX9K转化毕赤酵母后,经PCR鉴定,证明形成了目的基因的克隆。结论:应用毕赤酵母作为受体菌,pPIC9K为载体,成功克隆了HRPC2。  相似文献   

4.
毕赤酵母G5拮抗葡萄灰霉病机理初探   总被引:1,自引:0,他引:1  
针对新疆红提葡萄中分离的生防菌株——毕赤酵母G5,以葡萄灰霉菌(Botrytis cinerea)为靶标菌,研究了G5对葡萄灰霉菌孢子及对葡萄果实内5种关键酶活性的影响,初步探讨了G5拮抗葡萄采后灰霉病的机理。采用离体(in vitro)实验与活体(in vivo)实验的方法对毕赤酵母菌G5拮抗葡萄灰霉病的机理进行探究。结果发现,毕赤酵母菌株G5对葡萄灰霉菌孢子的萌发和菌丝生长均有抑制作用,对灰霉菌丝的抑制率最高为80.20%,对灰霉孢子抑制率达86.89%;两者间存在营养竞争关系,有重寄生现象产生,拮抗菌自身并不分泌抗菌物质。此外,该菌株能诱导果实体内过氧化物酶、多酚氧化酶、苯丙氨酸解氨酶、几丁质酶、β-1,3-葡聚糖酶的酶活性,使其酶活性有显著提高,说明毕赤酵母G5可以有效的诱导果实内抗病相关酶的活性,增强对灰霉病的抑制效果。毕赤酵母G5拮抗葡萄灰霉病的机理主要包括营养竞争、诱导抗病性,是否有重寄生作用还需要进一步验证。  相似文献   

5.
结核分枝杆菌耐酸机制的研究进展   总被引:1,自引:0,他引:1  
结核分枝杆菌能在宿主体内长期存活,很大一部分原因是能抵抗吞噬体的酸性环境。细菌一方面能抑制吞噬体与溶酶体融合,干扰吞噬体成熟、酸化过程;另一方面也能通过自身功能抵抗吞噬溶酶体内的酸性杀伤作用。本文主要介绍吞噬体的酸化过程及结核分枝杆菌耐酸机制的最新研究进展。  相似文献   

6.
细胞在生理状态下自体吞噬出现的频率很低,很难用正常细胞来研究自体吞噬活动,一般都通过诱导自体吞噬来获得有关自体吞噬活动的资料。本实验观察了肝、肾、睾丸等组织的32种细胞,发现睾丸间质细胞中自体吞噬出现频率远远高于其他细胞,平均每100个细胞切面中可以看到25个自噬小体,从而为研究自体吞噬的过程和机理提供了一个正常细胞模型。本实验还观察到睾丸间质细胞的自体吞噬活动可分为前自噬小体、早期自噬小体和晚期自噬小体三个阶段,是一个连续的过程。前自噬小体和早期自噬小体不含溶酶体酶,只有在自噬小体与溶酶体接触后,才从后者获取溶酶体酶并将其内容物消化分解,成为晚期自噬小体。由自体吞噬所产生的残余体并不在睾丸间质细胞内积聚,而是通过胞吐作用排出细胞外。  相似文献   

7.
为探讨转萝卜过氧化物酶基因(Rsprx1)提高毕赤酵母(Pichia pastoris)抗盐性机理,用不同浓度NaCl处理转基因酵母GSRP25和野生型酵母GS115,检测菌体生长、相对无机盐含量、过氧化物酶活性和同工酶谱及某些抗性基因表达.实验结果表明,在YPD培养条件下,转基因酵母的过氧化物酶活性和菌体生长速率高于野生型酵母,其过氧化氢酶(CTT1)、热休克蛋白(Hsp12)、Rsprx1基因表达和K+/Na+比值均高于野生型.醛脱氢酶(ALD3)的mRNA表达在两者之间没有差异.在BMMY培养条件下,转基因酵母菌体生长速率和过氧化物酶活性显著高于野生型酵母.因此,转基因酵母通过增加过氧化物酶基因表达提高过氧化物酶活性,改变细胞的某些基因表达和无机盐相对含量,从而提高酵母抗盐能力.  相似文献   

8.
【目的】大豆过氧化物酶(SBP)作用底物广泛、比活高、热稳定性好,使其在免疫检测、工业污染废水处理领域有着广泛的应用潜力。现有的生产方法主要是从大豆壳中提取,这种方法产量低,成本高,远不能满足于工业应用要求,本研究希望实现在毕赤酵母中高效表达有功能活性的大豆过氧化物酶。【方法】将大豆过氧化物酶基因以及C末端截短20个氨基酸的基因克隆pPIC-9K载体中,并在毕赤酵母X-33中诱导表达。同时还将糖基化位点的天冬酰胺突变成为谷氨酰胺,研究糖基化位点对表达的影响。【结果】全长SBP在毕赤酵母中表达是无活性的,只有截短的SBP△20在试管发酵的表达活力达23.5 U/mL,经过糖基化位点的突变表明130、144、185、197对酶活非常重要,不能突变;211和216位点去糖基化突变对酶活有所提高。【结论】经过发酵条件的优化,在5 L的发酵罐中发酵液上清最高酶活力达510 U/mL,是目前报道的最高水平。  相似文献   

9.
摘要:【目的】旨在用毕赤酵母高效表达灰盖鬼伞过氧化物酶。【方法】借助DNAworks 3.1软件设计、优化引物,用自己构建的基因合成、定点突变平台合成了毕赤酵母密码子偏好性的灰盖鬼伞过氧化物酶基因,测序后构建在表达载体pPICZαA上,整合于巴斯德毕赤酵母GS115染色体,来自酿酒酵母的α因子作为信号肽序列指导重组蛋白的分泌表达。从82个PCR检测为阳性的酵母转化子中筛选出6株高Zeocin抗性的菌进行表达,选表达酶活性最高的作为实验菌株命名为CIP/GS115。【结果】以ABTS为底物时,CIP/GS115 在甲醇诱导第4天酶活最高达到487.5 U/mL,是目前摇瓶培养诱导表达灰盖鬼伞过氧化物酶活性最高报道。纯化后的酶最适反应温度为25℃,45℃酶反应速度是最适温度时的61.5%,在低于40℃时比较稳定,超过45℃稳定性迅速下降。最适反应pH 为5.0,在pH 4.5-6.5之间比较稳定。以不同的底物研究纯酶底物特异性发现最适底物的顺序是:ABTS > 愈创木酚> 2,6-二甲氧苯酚> 2,4-二氯苯酚> 苯酚。【结论】灰盖鬼伞过氧化物酶在毕赤酵母中的高效分泌表达和高的特殊活性为该酶在废水处理、染料脱色等方面的工业化应用奠定了一定基础。  相似文献   

10.
目的:构建产fusaruside的毕赤酵母菌株,解决天然小分子免疫抑制剂fusaruside的来源问题。方法:从禾谷镰刀菌Fusarium graminearum PH-1中扩增获得合成fusaruside的相关基因-3位去饱和酶[Δ3(E)-SD]和10位去饱和酶[Δ10(E)-SD]基因;并通过2A肽策略构建两种基因的共表达载体,转化到毕赤酵母GS115中进行双酶的诱导表达;对诱导后的毕赤酵母菌体进行甲醇和二氯甲烷的处理后,经高效液相色谱质谱联用仪(HPLC-MS)检测其中产物变化。结果:3位去饱和酶和10位去饱和酶在毕赤酵母中成功共表达,SDS-PAGE显示3位去饱和酶分子量约为48kDa,10位去饱和酶分子量约为65kDa; HPLC-MS显示重组酵母可以产生fusaruside。结论:与fusaruside原产菌株镰刀菌相比,该酵母菌的发酵时间更短、产量更高,为fusaruside的进一步开发与应用奠定基础。  相似文献   

11.
PpAtg30 tags peroxisomes for turnover by selective autophagy   总被引:1,自引:0,他引:1  
Autophagy, an intrinsically nonselective process, can also target selective cargo for degradation. The mechanism of selective peroxisome turnover by autophagy-related processes (pexophagy), termed micropexophagy and macropexophagy, is unknown. We show how a Pichia pastoris protein, PpAtg30, mediates peroxisome selection during pexophagy. It is necessary for pexophagy, but not for other selective and nonselective autophagy-related processes. It localizes at the peroxisome membrane via interaction with peroxins, and during pexophagy it colocalizes transiently at the preautophagosomal structure (PAS) and interacts with the autophagy machinery. PpAtg30 is required for formation of pexophagy intermediates, such as the micropexophagy apparatus (MIPA) and the pexophagosome (Ppg). During pexophagy, PpAtg30 undergoes multiple phosphorylations, at least one of which is required for pexophagy. PpAtg30 overexpression stimulates pexophagy even under peroxisome-induction conditions, impairing peroxisome biogenesis. Therefore, PpAtg30 is a key player in the selection of peroxisomes as cargo and in their delivery to the autophagy machinery for pexophagy.  相似文献   

12.
Three overlapping pathways mediate the transport of cytoplasmic material to the vacuole in Saccharomyces cerevisiae. The cytoplasm to vacuole targeting (Cvt) pathway transports the vacuolar hydrolase, aminopeptidase I (API), whereas pexophagy mediates the delivery of excess peroxisomes for degradation. Both the Cvt and pexophagy pathways are selective processes that specifically recognize their cargo. In contrast, macroautophagy nonselectively transports bulk cytosol to the vacuole for recycling. Most of the import machinery characterized thus far is required for all three modes of transport. However, unique features of each pathway dictate the requirement for additional components that differentiate these pathways from one another, including at the step of specific cargo selection.We have identified Cvt9 and its Pichia pastoris counterpart Gsa9. In S. cerevisiae, Cvt9 is required for the selective delivery of precursor API (prAPI) to the vacuole by the Cvt pathway and the targeted degradation of peroxisomes by pexophagy. In P. pastoris, Gsa9 is required for glucose-induced pexophagy. Significantly, neither Cvt9 nor Gsa9 is required for starvation-induced nonselective transport of bulk cytoplasmic cargo by macroautophagy. The deletion of CVT9 destabilizes the binding of prAPI to the membrane and analysis of a cvt9 temperature-sensitive mutant supports a direct role of Cvt9 in transport vesicle formation. Cvt9 oligomers peripherally associate with a novel, perivacuolar membrane compartment and interact with Apg1, a Ser/Thr kinase essential for both the Cvt pathway and autophagy. In P. pastoris Gsa9 is recruited to concentrated regions on the vacuole membrane that contact peroxisomes in the process of being engulfed by pexophagy. These biochemical and morphological results demonstrate that Cvt9 and the P. pastoris homologue Gsa9 may function at the step of selective cargo sequestration.  相似文献   

13.
Sterol glucosyltransferase, Ugt51/Atg26, is essential for both micropexophagy and macropexophagy of methanol-induced peroxisomes in Pichia pastoris. However, the role of this protein in pexophagy in other yeast remained unclear. We show that oleate- and amine-induced peroxisomes in Yarrowia lipolytica are degraded by Atg26-independent macropexophagy. Surprisingly, Atg26 was also not essential for macropexophagy of oleate- and amine-induced peroxisomes in P. pastoris, suggesting that the function of sterol glucoside (SG) in pexophagy is both species and peroxisome inducer specific. However, the rates of degradation of oleate- and amine-induced peroxisomes in P. pastoris were reduced in the absence of SG, indicating that P. pastoris specifically uses sterol conversion by Atg26 to enhance selective degradation of peroxisomes. However, methanol-induced peroxisomes apparently have lost the redundant ability to be degraded without SG. We also show that the P. pastoris Vac8 armadillo repeat protein is not essential for macropexophagy of methanol-, oleate-, or amine-induced peroxisomes, which makes PpVac8 the first known protein required for the micropexophagy, but not for the macropexophagy, machinery. The uniqueness of Atg26 and Vac8 functions under different pexophagy conditions demonstrates that not only pexophagy inducers, such as glucose or ethanol, but also the inducers of peroxisomes, such as methanol, oleate, or primary amines, determine the requirements for subsequent pexophagy in yeast.  相似文献   

14.
Mutants of the methanol-utilizing yeast Pichia pastoris and the alkane-utilizing yeast Yarrowia lipolytica defective in the orthologue of UGT51 (encoding sterol glucosyltransferase) were isolated and compared. These mutants do not contain the specific ergosterol derivate, ergosterol glucoside. We observed that the P. pastoris UGT51 gene is required for pexophagy, the process by which peroxisomes containing methanol-metabolizing enzymes are selectively shipped to and degraded in the vacuole upon shifting methanol-grown cells of this yeast to glucose or ethanol. PpUGT51 is also required for other vacuole related processes. In contrast, the Y. lipolytica UGT51 gene is required for utilization of decane, but not for pexophagy. Thus, sterol glucosyltransferases play different functional roles in P. pastoris and Y. lipolytica.  相似文献   

15.
Cao Y  Klionsky DJ 《Autophagy》2007,3(1):17-20
Autophagy is a degradative pathway conserved among eukaryotes. It is a major route for degradation of long-lived proteins and entire organelles, such as peroxisomes. Atg26, a sterol glucosyltransferase, is specifically required for micro- and macropexophagy, but not for starvation-induced bulk autophagy in Pichia pastoris. Here we study the requirement of Saccharomyces cerevisiae Atg26 in the Cvt pathway, nonspecific autophagy and pexophagy. Our results show that the S. cerevisiae atg26Delta strain is not defective in prApe1 maturation, macroautophagy or peroxisome degradation, in contrast to the situation seen in Pichia pastoris. These studies highlight the importance of examining mutants in multiple organisms.  相似文献   

16.
In methylotrophic yeasts, peroxisomes are required for methanol utilization, but are dispensable for growth on most other carbon sources. Upon adaptation of cells grown on methanol to glucose or ethanol, redundant peroxisomes are selectively and quickly shipped to, and degraded in, vacuoles via a process termed pexophagy. We identified a novel gene named ATG28 (autophagy-related genes) involved in pexophagy in the yeast Pichia pastoris. This yeast exhibits two morphologically distinct pexophagy pathways, micro- and macropexophagy, induced by glucose or ethanol, respectively. Deficiency in ATG28 impairs both pexophagic mechanisms but not general (bulk turnover) autophagy, a degradation pathway in yeast triggered by nitrogen starvation. It is known that the micro-, macropexophagy, and general autophagy machineries are distinct but share some molecular components. The identification of ATG28 suggests that pexophagy may involve species-specific components, since this gene appears to have only weak homologues in other yeasts.  相似文献   

17.
《Autophagy》2013,9(1):30-38
In methylotrophic yeasts, peroxisomes are required for methanol utilization, but are dispensable for growth on most other carbon sources. Upon adaptation of cells grown on methanol to glucose or ethanol, redundant peroxisomes are selectively and quickly shipped to, and degraded in, vacuoles via a process termed pexophagy.

We identified a novel gene named ATG28 (autophagy-related genes) involved in pexophagy in the yeast Pichia pastoris. This yeast exhibits two morphologically distinct pexophagy pathways, micro- and macropexophagy, induced by glucose or ethanol, respectively. Deficiency in ATG28 impairs both pexophagic mechanisms but not general (bulk turnover) autophagy, a degradation pathway in yeast triggered by nitrogen starvation. It is known that the micro-, macropexophagy, and general autophagy machineries are distinct but share some molecular components. The identification of ATG28 suggests that pexophagy may involve species-specific components, since this gene appears to have only weak homologues in other yeasts.  相似文献   

18.
Eukaryotic cells have the ability to degrade proteins and organelles by selective and nonselective modes of micro- and macroautophagy. In addition, there exist both constitutive and regulated forms of autophagy. For example, pexophagy is a selective process for the regulated degradation of peroxisomes by autophagy. Our studies have shown that the differing pathways of autophagy have many molecular events in common. In this article, we have identified a new member in the family of autophagy genes. GSA12 in Pichia pastoris and its Saccharomyces cerevisiae counterpart, CVT18, encode a soluble protein with two WD40 domains. We have shown that these proteins are required for pexophagy and autophagy in P. pastoris and the Cvt pathway, autophagy, and pexophagy in S. cerevisiae. In P. pastoris, Gsa12 appears to be required for an early event in pexophagy. That is, the involution of the vacuole or extension of vacuole arms to engulf the peroxisomes does not occur in the gsa12 mutant. Consistent with its role in vacuole engulfment, we have found that this cytosolic protein is also localized to the vacuole surface. Similarly, Cvt18 displays a subcellular localization that distinguishes it from the characterized proteins required for cytoplasm-to-vacuole delivery pathways.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, the one-at-a-time deletions of either the high-affinity glucose sensor gene SNF3 or the low-affinity glucose sensor gene RGT2 only slightly reduced pexophagy; however, deleting both genes greatly reduced pexophagy, evincing interaction beyond the sum of the additive effects, as recently shown. The present study identifies the only ScSNF3/RGT2 ortholog in the methylotrophic yeast Pichia pastoris (designated as PpGSS1, from GlucoSe Sensor) and describes its roles in autophagic pathways (non-selective and selective). GSS1 knock-out strain has been constructed. The experiments support the hypothesis that Gss1 plays an important role in autophagic degradation of peroxisomes and glucose catabolite repression in P. pastoris.  相似文献   

20.
Recently, we showed that the requirement of sterol glucoside (SG) during pexophagy in yeasts is dependent on the species and the nature of peroxisome inducers. Atg26, the enzyme that converts sterol to SG, is essential for degradation of very large methanol-induced peroxisomes, but only partly required for degradation of smaller-sized oleate- and amine-induced peroxisomes in Pichia pastoris. Moreover, oleate- and amine-induced peroxisomes of another yeast, Yarrowia lipolytica, are degraded by an Atg26-independent mechanism. The same is true for degradation of oleate-induced peroxisomes in Saccharomyces cerevisiae. Here, we review our findings on the specificity of Atg26 function in pexophagy and extend our observations to the role of SG in the cytoplasm to vacuole targeting (Cvt) pathway and bulk autophagy. The results presented here and elsewhere indicate that Atg26 might increase the efficacy of all autophagy-related pathways in P. pastoris, but not in other yeasts. Recently, it was shown that P. pastoris Atg26 (PpAtg26) is required for elongation of the pre-autophagosomal structure (PAS) into the micropexophagic membrane apparatus (MIPA) during micropexophagy. Therefore, we speculate that SG might facilitate elongation of any double membrane from the PAS and this enhancer function of SG becomes essential when extremely large double membranes are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号