首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple myeloma (MM) is a B-cell malignancy characterized by an accumulation of abnormal clonal plasma cells in the bone marrow. Introduction of the proteasome-inhibitor bortezomib has improved MM prognosis and survival; however hypoxia-induced or acquired bortezomib resistance remains a clinical problem. This study highlighted the role of thioredoxin reductase 1 (TrxR1) in the hypoxia-induced and acquired bortezomib resistance in MM. Higher TrxR1 gene expression correlated with high-risk disease, adverse overall survival, and poor prognosis in myeloma patients. We demonstrated that hypoxia induced bortezomib resistance in myeloma cells and increased TrxR1 protein levels. Inhibition of TrxR1 using auranofin overcame hypoxia-induced bortezomib resistance and restored the sensitivity of hypoxic-myeloma cells to bortezomib. Hypoxia increased NF-кβ subunit p65 nuclear protein levels and TrxR1 inhibition decreased hypoxia-induced NF-кβ p65 protein levels in the nucleus and reduced the expression of NF-кβ-regulated genes. In addition, higher TrxR1 protein levels were observed in bortezomib-resistant myeloma cells compared to the naïve cells, and its inhibition using either auranofin or TrxR1-specific siRNAs reversed bortezomib resistance. TrxR1 inhibition reduced p65 mRNA and protein expression in bortezomib-resistant myeloma cells, and also decreased the expression of NF-кβ-regulated anti-apoptotic and proliferative genes. Thus, TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance by inhibiting the NF-кβ signaling pathway. Our findings demonstrate that elevated TrxR1 levels correlate with the acquisition of bortezomib resistance in MM. We propose considering TrxR1-inhibiting drugs, such as auranofin, either for single agent or combination therapy to circumvent bortezomib-resistance and improve survival outcomes of MM patients.  相似文献   

2.
Clinical success of the proteasome inhibitor established bortezomib as one of the most effective drugs in treatment of multiple myeloma (MM). While survival benefit of bortezomib generated new treatment strategies, the primary and secondary resistance of MM cells to bortezomib remains a clinical concern. This study aimed to highlight the role of p53-induced RING-H2 (Pirh2) in the acquisition of bortezomib resistance in MM and to clarify the function and mechanism of action of Pirh2 in MM cell growth and resistance, thereby providing the basis for new therapeutic targets for MM. The proteasome inhibitor bortezomib has been established as one of the most effective drugs for treating MM. We demonstrated that bortezomib resistance in MM cells resulted from a reduction in Pirh2 protein levels. Pirh2 overexpression overcame bortezomib resistance and restored the sensitivity of myeloma cells to bortezomib, while a reduction in Pirh2 levels was correlated with bortezomib resistance. The levels of nuclear factorkappaB (NF-κB) p65, pp65, pIKBa, and IKKa were higher in bortezomib-resistant cells than those in parental cells. Pirh2 overexpression reduced the levels of pIKBa and IKKa, while the knockdown of Pirh2 via short hairpin RNAs increased the expression of NF-κB p65, pIKBa, and IKKa. Therefore, Pirh2 suppressed the canonical NF-κB signaling pathway by inhibiting the phosphorylation and subsequent degradation of IKBa to overcome acquired bortezomib resistance in MM cells.  相似文献   

3.
Increased levels of the nuclear export protein, exportin 1 (XPO1), were demonstrated in multiple myeloma (MM) patients. Targeting XPO1 with selinexor (the selective inhibitor of nuclear export; SINE compound KPT-330) demonstrates broad antitumor activity also in patient cells resistant to bortezomib; hence, it is a promising target in MM patients. Hypoxia is known to mediate tumor progression and drug resistance (including bortezomib resistance) in MM cells. In this study, we tested the effects of selinexor alone or in combination with bortezomib in normoxia and hypoxia on MM cell survival and apoptosis in vitro and in vivo. In vitro, selinexor alone decreased survival and increased apoptosis, resensitizing MM cells to bortezomib. In vivo, we examined the effects of selinexor alone on tumor initiation and tumor progression, as well as selinexor in combination with bortezomib, on tumor growth in a bortezomib-resistant MM xenograft mouse model. Selinexor, used as a single agent, delayed tumor initiation and tumor progression, prolonging mice survival. In bortezomib-resistant xenografts, selinexor overcame drug resistance, significantly decreasing tumor burden and extending mice survival when combined with bortezomib.  相似文献   

4.
SB743921 is a potent inhibitor of the spindle protein kinesin and is being investigated in ongoing clinical trials for the treatment of myeloma. However, little is known about the molecular events underlying the induction of cell death in multiple myeloma (MM) by SB743921, alone or in combination treatment. Here, we report that SB743921 induces mitochondria-mediated cell death via inhibition of the NF-κB signaling pathway, but does not cause cell cycle arrest in KMS20 MM cells. SB743921-mediated inhibition of the NF-κB pathway results in reduced expression of SOD2 and Mcl-1, leading to mitochondrial dysfunction. We also found that combination treatment with SB743921 and bortezomib induces death in bortezomib-resistant KMS20 cells. Altogether, these data suggest that treatment with SB743921 alone or in combination with bortezomib offers excellent translational potential and promises to be a novel MM therapy. [BMB Reports 2015; 48(10): 571-576]  相似文献   

5.
Bortezomib has been known as the most promising anti-cancer drug for multiple myeloma (MM). However, recent studies reported that not all MM patients respond to bortezomib. To overcome such a stumbling-block, studies are needed to clarify the mechanisms of bortezomib resistance. In this study, we established a bortezomib-resistant cell line (U266/velR), and explored its biological characteristics. The U266/velR showed reduced sensitivity to bortezomib, and also showed crossresistance to the chemically unrelated drug thalidomide. U266/velR cells had a higher proportion of CD138 negative subpopulation, known as stem-like feature, compared to parental U266 cells. U266/velR showed relatively less inhibitory effect of prosurvival NF-κB signaling by bortezomib. Further analysis of RNA microarray identified genes related to ubiquitination that were differentially regulated in U266/velR. Moreover, the expression level of CD52 in U266 cells was associated with bortezomib response. Our findings provide the basis for developing therapeutic strategies in bortezomib-resistant relapsed and refractory MM patients. [BMB Reports 2014; 47(5): 274-279]  相似文献   

6.
Multiple Myeloma (MM) is a haematologic malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Over the last 10–15 y the introduction of the proteasome-inhibitor bortezomib has improved MM prognosis, however relapse due to bortezomib-resistance is inevitable and the disease, at present, remains incurable. To model bortezomib-resistant MM we generated bortezomib-resistant MM cell lines (n = 4 ) and utilised primary malignant plasma cells from patients relapsing after bortezomib treatment (n = 6 ). We identified enhanced Bruton''s tyrosine kinase (BTK) activity in bortezomib-resistant MM cells and found that inhibition of BTK, either pharmacologically with ibrutinib (0.5 μM) or via lenti-viral miRNA-targeted BTK interference, re-sensitized previously bortezomib-resistant MM cells to further bortezomib therapy at a physiologically relevant concentration (5 nM). Further analysis of pro-survival signaling revealed a role for the NF-κB p65 subunit in MM bortezomib-resistance, thus a combination of BTK and NF-κB p65 inhibition, either pharmacologically or via further lenti-viral miRNA NF-κB p65 interference, also restored sensitivity to bortezomib, significantly reducing cell viability (37.5 ± 6 .9 %, ANOVA P ≤ 0 .001). Accordingly, we propose the clinical evaluation of a bortezomib/ibrutinib combination therapy, including in patients resistant to single-agent bortezomib.  相似文献   

7.
Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor.  相似文献   

8.
9.
10.
11.
The sesquiterpene lactone, parthenolide (PTL), possesses strong anticancer activity against various cancer cells. We report that PTL strongly induced apoptosis in 4 multiple myeloma (MM) cell lines and primary MM cells (CD38+ high), but barely induced death in normal lymphocytes (CD38−/+low). PTL-mediated apoptosis correlated well with ROS generation and was almost completely inhibited by L-N-acetylcysteine (L-NAC), indicating the crucial role of oxidative stress in the mechanism. Among 4 MM cell lines, there is considerable difference in susceptibility to PTL. KMM-1 and MM1S cells sensitive to PTL possess less catalase activity than the less sensitive KMS-5 and NCI-H929 cells as well as normal lymphocytes. A catalase inhibitor 3-amino-1,2,4-triazole enhanced their PTL-mediated ROS generation and cell death. The siRNA-mediated knockdown of catalase in KMS-5 cells decreased its activity and sensitized them to PTL. Our findings indicate that PTL induced apoptosis in MM cells depends on increased ROS and intracellular catalase activity is a crucial determinant of their sensitivity to PTL.  相似文献   

12.
Loss of the chromosomal region 8p21 negatively effects survival in patients with multiple myeloma (MM) that undergo autologous stem cell transplantation (ASCT). In this study, we aimed to identify the immunological and molecular consequences of del(8)(p21) with regards to treatment response and bortezomib resistance.In patients receiving bortezomib as a single first line agent without any high-dose therapy, we have observed that patients with del(8)(p21) responded poorly to bortezomib with 50% showing no response while patients without the deletion had a response rate of 90%. In vitro analysis revealed a higher resistance to bortezomib possibly due to an altered gene expression profile caused by del(8)(p21) including genes such as TRAIL-R4, CCDC25, RHOBTB2, PTK2B, SCARA3, MYC, BCL2 and TP53. Furthermore, while bortezomib sensitized MM cells without del(8)(p21) to TRAIL/APO2L mediated apoptosis, in cells with del(8)(p21) bortezomib failed to upregulate the pro-apoptotic death receptors TRAIL-R1 and TRAIL-R2 which are located on the 8p21 region. Also expressing higher levels of the decoy death receptor TRAIL-R4, these cells were largely resistant to TRAIL/APO2L mediated apoptosis.Corroborating the clinical outcome of the patients, our data provides a potential explanation regarding the poor response of MM patients with del(8)(p21) to bortezomib treatment. Furthermore, our clinical analysis suggests that including immunomodulatory agents such as Lenalidomide in the treatment regimen may help to overcome this negative effect, providing an alternative consideration in treatment planning of MM patients with del(8)(p21).  相似文献   

13.
Rare genetic mutations in the DJ-1 and Parkin genes cause recessive Parkinsonism, however, the relationship between these two genes is not fully elucidated. Current emerging evidence suggests that these genes are involved in mitochondrial homeostasis, and that a deficiency in either of these two genes is associated with damages in mitochondrial function and morphology. In this study, we demonstrated that knockdown of DJ-1 expression or the overexpression of the DJ-1 L166P mutation results in a damaged phenotype in mitochondria and a hypersensitivity to H2O2-induced cell apoptosis. These phenotypes result from increased levels of endogenous oxidative stress. However, overexpression of wild-type Parkin rescued the phenotypes observed in the mitochondria of DJ-1 knockdown and DJ-1 L166P mutant cells. We also determined that there were differences between the two cell models. Furthermore, both H2O2 treatment and the DJ-1 L166P mutation weakened the interaction between DJ-1 and Parkin. Taken together, these findings suggested that DJ-1 and Parkin were linked through oxidative stress, and that overexpression of Parkin protects DJ-1 protein-deficient and DJ-1 L166P mutant-expressing cells via inhibition of oxidative stress.  相似文献   

14.
15.
16.
AimIt is of clinical importance to find methods to overcome bortezomib resistance. In the current study, we clarified the relationship between resistance to bortezomib and the differentiation status of myeloma cells, and explored the feasibility of induction of differentiation in overcoming bortezomib resistance in myeloma.MethodsCell morphology, immunoglobulin light-chain protein secretion levels, and XBP-1 expression were used to evaluate the differentiation status of myeloma cells. Low dose 2-ME2 alone or in combination with ATRA was used to induce differentiation in myeloma cells.ResultsThe differentiation status of myeloma cells was related to myeloma sensitivity to bortezomib. After successful induction of differentiation, the myeloma cells were more sensitive to bortezomib with decreased growth and an increased rate of apoptosis. Induction of differentiation increased the proteasome workload in myeloma cells by increasing immunoglobulin secretion, while reducing proteasome capacity by decreasing proteasome activity. The imbalance between increased proteasome workload and decreased proteasome capacity is a possible mechanism by which induction of differentiation overcomes myeloma resistance to bortezomib.ConclusionThe current study demonstrated, for the first time, that myeloma differentiation status is associated with myeloma sensitivity to bortezomib and that induction of differentiation can overcome myeloma resistance to bortezomib.  相似文献   

17.

Background

The proteasome inhibitor bortezomib represents an important advance in the treatment of multiple myeloma (MM). Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood.

Methodology/Principal Findings

We investigated the differential phosphoproteome upon proteasome inhibition by using stable isotope labeling by amino acids in cell culture (SILAC) in combination with phosphoprotein enrichment and LC-MS/MS analysis. In total 233 phosphoproteins were identified and 72 phosphoproteins showed a 1.5-fold or greater change upon bortezomib treatment. The phosphoproteins with expression alterations encompass all major protein classes, including a large number of nucleic acid binding proteins. Site-specific phosphopeptide quantitation revealed that Ser38 phosphorylation on stathmin increased upon bortezomib treatment, suggesting new mechanisms associated to bortezomib-induced apoptosis in MM cells. Further studies demonstrated that stathmin phosphorylation profile was modified in response to bortezomib treatment and the regulation of stathmin by phosphorylation at specific Ser/Thr residues participated in the cellular response induced by bortezomib.

Conclusions/Significance

Our systematic profiling of phosphorylation changes in response to bortezomib treatment not only advanced the global mechanistic understanding of the action of bortezomib on myeloma cells but also identified previously uncharacterized signaling proteins in myeloma cells.  相似文献   

18.
Mutations in DJ-1 lead to early onset Parkinson's disease (PD). The aim of this study was to elucidate further the underlying mechanisms leading to neuronal cell death in DJ-1 deficiency in vivo and determine whether the observed cell loss could be prevented pharmacologically. Inactivation of DJ-1 in zebrafish, Danio rerio, resulted in loss of dopaminergic neurons after exposure to hydrogen peroxide and the proteasome inhibitor MG132. DJ-1 knockdown by itself already resulted in increased p53 and Bax expression levels prior to toxin exposure without marked neuronal cell death, suggesting subthreshold activation of cell death pathways in DJ-1 deficiency. Proteasome inhibition led to a further increase of p53 and Bax expression with widespread neuronal cell death. Pharmacological p53 inhibition either before or during MG132 exposure in vivo prevented dopaminergic neuronal cell death in both cases. Simultaneous knockdown of DJ-1 and the negative p53 regulator mdm2 led to dopaminergic neuronal cell death even without toxin exposure, further implicating involvement of p53 in DJ-1 deficiency-mediated neuronal cell loss. Our study demonstrates the utility of zebrafish as a new animal model to study PD gene defects and suggests that modulation of downstream mechanisms, such as p53 inhibition, may be of therapeutic benefit.  相似文献   

19.
Intensive protein synthesis is a unique and differential trait of multiple myeloma (MM) cells. Previously we showed that tetraspanin (CD81, CD82) overexpression in MM cell lines attenuated Akt/mTOR cascades, activated UPR, and caused autophagic death, suggesting breach of protein homeostasis. Here, we explored the role of protein synthesis in the tetraspanin-induced MM cell death. Contrary to attenuation of the major metabolic regulator, mTOR we determined elevated steady-state levels of protein in CD81N1/CD82N1 transfected MM lines (RPMI-8226, CAG). Elevated levels of immunoglobulins supported increased protein production in RPMI-8226. Changes in cell morphology consistent with elevated protein synthesis were also determined (cell, nuclei, and nucleoli sizes and ratios). Increased levels of phospho-rpS6 and decreased levels of phospho-AMPK were consistent with increased translation but independent of mTOR. Involvement of p38 and its role in tetraspanin induced translation and cell death were demonstrated. Microarray analyses of tetraspanin transfected MM cell lines revealed activation of protein synthesis signaling cascades and signals implicated in ribosome biogenesis (snoRNAs). Finally, we showed tetraspanins elevated protein synthesis was instrumental to MM cells' death. This work explores and demonstrates that excessive protein translation can be detrimental to MM cell lines and therefore may present a therapeutic target. Proteostasis is particularly important in MM because it integrates the high levels of protein production unique to myeloma cells with critically important microenvironmental cues. We suggest that increasing translation may be the path of least resistance in MM and thus may afford a novel platform for strategically designed therapy.  相似文献   

20.
Osteoclasts (OCs) play an essential role in bone destruction in patients with multiple myeloma (MM). Bortezomib can ameliorate bone destruction in patients with MM, but advanced MM often resists bortezomib. We studied the molecular mechanisms of bortezomib tolerance in MM. The expression of the MM-related genes in newly diagnosed patients with MM and normal donors were studied. C-C motif chemokine ligand 3 (CCL3) is a cytokine involved in the differentiation of OCs, and its expression is closely related to APRIL (a proliferation-inducing ligand). We found that bortezomib treatment inhibited APRIL and CCL3. But the heme oxygenase-1 (HO-1) activator hemin attenuated the inhibitory effects of bortezomib on APRIL and CCL3. We induced mononuclear cells to differentiate into OCs, and the enzyme-linked immunosorbent assay showed that the more OCs differentiated, the higher the levels CCL3 secretions detected. Animal experiments showed that hemin promoted MM cell infiltration in mice. The weight and survival rate of tumor mice were associated with HO-1 expression. Immunohistochemical staining showed that HO-1, APRIL, and CCL3 staining were positively stained in the tumor infiltrating sites. Then, MM cells were transfected with L-HO-1/si-HO-1 expression vectors and cultured with an nuclear factor (NF)-kappa B (κB) pathway inhibitor, QNZ. The results showed that HO-1 was the upstream gene of APRIL, NF-κB, and CCL3. We showed that HO-1 could attenuate the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in MM cells, and the tolerance of MM cells to bortezomib and the promotion of bone destruction are related to HO-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号