首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Understanding the signaling pathways involved in the regulation of anti-inflammatory and pro-inflammatory responses in tuberculosis is extremely important in tailoring a macrophage innate response to promote anti-tuberculosis immunity in the host. Although the role of toll-like receptors (TLRs) in the regulation of anti-inflammatory and pro-inflammatory responses is known, the detailed molecular mechanisms by which the Mycobacterium tuberculosis bacteria modulate these innate responses are not clearly understood. In this study, we demonstrate that M. tuberculosis heat shock protein 60 (Mtbhsp60, Cpn60.1, and Rv3417c) interacts with both TLR2 and TLR4 receptors, but its interaction with TLR2 leads to clathrin-dependent endocytosis resulting in an increased production of interleukin (IL)-10 and activated p38 MAPK. Blockage of TLR2-mediated endocytosis inhibited IL-10 production but induced production of tumor necrosis factor (TNF)-α and activated ERK1/2. In contrast, upon interaction with TLR4, Mtbhsp60 remained predominantly localized on the cell surface due to poorer endocytosis of the protein that led to decreased IL-10 production and p38 MAPK activation. The Escherichia coli homologue of hsp60 was found to be retained mainly on the macrophage surface upon interaction with either TLR2 or TLR4 that triggered predominantly a pro-inflammatory-type immune response. Our data suggest that cellular localization of Mtbhsp60 upon interaction with TLRs dictates the type of polarization in the innate immune responses in macrophages. This information is likely to help us in tailoring the host protective immune responses against M. tuberculosis.  相似文献   

2.
Gram‐negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1‐dependent manner to Gram‐negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram‐negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram‐negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF‐κB and NOD1‐dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1‐dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice‐induced innate and adaptive immune responses via a NOD1‐dependent but TLR‐independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram‐negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.  相似文献   

3.
Toll-like receptors (TLRs) are innate immune receptors that sense a variety of pathogen-associated molecular patterns (PAMPs) by interacting with them and subsequently initiating signal transduction cascades that elicit immune responses. TLR11 has been shown to interact with two known protein PAMPs: Salmonella and E. coli flagellin FliC and Toxoplasma gondii profilin-like protein. Given the highly divergent biology of these pathogens recognized by TLR11, it is unclear whether common mechanisms are used to recognize these distinct protein PAMPs. Here we show that TLR11 interacts with these two PAMPs using different receptor domains. Furthermore, TLR11 binding to flagellin and profilin exhibits differential dependency on pH and receptor ectodomain cleavage.  相似文献   

4.
Leishmania devices its survival strategy by suppressing the host’s immune functions. The antigen molecules produced by Leishmania interferes with the host’s cell signaling cascades and consequently changes the protein expression pattern of the antigen-presenting cell (APC). This creates an environment suitable for the switching of the T-cell responses from a healing Th1 response to a non-healing Th2 response that is favorable for the continued survival of the parasite inside the host APC. Using a reconstructed signaling network of the intracellular and intercellular reactions between a Leishmania infected APC and T-cell, we propose a computational model to predict the inhibitory effect of the Leishmania infected APC on the T-cell and to identify the regulators of this Th1-/Th2-switching behavior as observed during Leishmania infection. In this work, we hypothesize that a complete removal of the parasite could only be achieved with a simultaneous up-regulation of the healing Th1 response and stimulation of nitric oxide (NO) production from the APCs, and downregulation of the non-healing Th2 response and thereby propose several unique combinations of protein molecules that could elicit this anti-Leishmania immune response. Our results indicate that TLR3 may play a positive role in eliciting NO synthesis, while TLR2 may be responsible for inhibiting an anti-Leishmania immune response. Also, TLR3 overexpression (in the APC), when combined with SHP2 inhibition (in the T cell), produces an anti-Leishmania response that is better than the conventional IFN-gamma or IL12 treatment. A similar anti-Leishmania response is also obtained in another combination where TLR3 (in APC) is overexpressed, and SHC and MKP (of T cell) are inhibited and activated, respectively. Through our study, we also observe that Leishmania infection may induce an upregulation of IFN-beta production from the APC that may lead to an upregulation of the RAP1 and SOCS3 proteins inside the T cell, the potential inhibitors of MAPK and JAK-STAT signaling pathways, respectively, via the TYK2-mediated pathway. This study not only enhances our knowledge in understanding the Th1/Th2 regulatory switch to promote healing response during leishmaniasis but also helps to identify novel combinations of proteins as potential immunomodulators.  相似文献   

5.
TLRs are important sensors of the innate immune system that serve to identify conserved microbial components to mount a protective immune response. They furthermore control the survival of the challenged cell by governing the induction of pro- and antiapoptotic signaling pathways. Pathogenic Yersinia spp. uncouple the balance of life and death signals in infected macrophages, which compels the macrophage to undergo apoptosis. The initiation of apoptosis by Yersinia infection specifically involves TLR4 signaling, although Yersinia can activate TLR2 and TLR4. In this study we characterized the roles of downstream TLR adapter proteins in the induction of TLR-responsive apoptosis. Experiments using murine macrophages defective for MyD88 or Toll/IL-1R domain-containing adapter inducing IFN-beta (TRIF) revealed that deficiency of TRIF, but not of MyD88, provides protection against Yersinia-mediated cell death. Similarly, apoptosis provoked by treatment of macrophages with the TLR4 agonist LPS in the presence of a proteasome inhibitor was inhibited in TRIF-defective, but not in MyD88-negative, cells. The transfection of macrophages with TRIF furthermore potently promoted macrophage apoptosis, a process that involved activation of a Fas-associated death domain- and caspase-8-dependent apoptotic pathway. These data indicate a crucial function of TRIF as proapoptotic signal transducer in bacteria-infected murine macrophages, an activity that is not prominent for MyD88. The ability to elicit TRIF-dependent apoptosis was not restricted to TLR4 activation, but was also demonstrated for TLR3 agonists. Together, these results argue for a specific proapoptotic activity of TRIF as part of the host innate immune response to bacterial or viral infection.  相似文献   

6.
Borrelia burgdorferi lipoproteins activate inflammatory cells through Toll-like receptor 2 (TLR2), suggesting that TLR2 could play a pivotal role in the host response to B. burgdorferi. TLR2 does play a critical role in host defense, as infected TLR2(-/-) mice harbored up to 100-fold more spirochetes in tissues than did TLR2(+/+) littermates. Spirochetes persisted at extremely elevated levels in TLR2-deficient mice for at least 8 wk following infection. Infected TLR2(-/-) mice developed normal Borrelia-specific Ab responses, as measured by quantity of Borrelia-specific Ig isotypes, the kinetics of class switching to IgG, and the complexity of the Ags recognized. These findings indicate that the failure to control spirochete levels in tissues is not due to an impaired acquired immune response. While macrophages from TLR2(-/-) mice were not responsive to lipoproteins, they did respond to nonlipoprotein components of sonicated spirochetes. These TLR2-independent responses could play a role during the inflammatory response to B. burgdorferi, as infected TLR2(-/-) mice developed greater ankle swelling than wild-type littermates. Thus, while TLR2-dependent signaling pathways play a major role in the innate host defense to B. burgdorferi, both inflammatory responses and the development of the acquired humoral response can occur in the absence of TLR2.  相似文献   

7.
Enteric pathogens represent a major cause of morbidity and mortality worldwide. Toll-like receptor (TLR) and inflammasome signaling are critical for host responses against these pathogens, but how these pathways are integrated remains unclear. Here, we show that TLR4 and the TLR adaptor TRIF are required for inflammasome activation in macrophages infected with the enteric pathogens Escherichia coli and Citrobacter rodentium. In contrast, TLR4 and TRIF were dispensable for Salmonella typhimurium-induced caspase-1 activation. TRIF regulated expression of caspase-11, a caspase-1-related protease that is critical for E. coli- and C. rodentium-induced inflammasome activation, but dispensable for inflammasome activation by S. typhimurium. Thus, TLR4- and TRIF-induced caspase-11 synthesis is critical for noncanonical Nlrp3 inflammasome activation in macrophages infected with enteric pathogens.  相似文献   

8.
9.
Bacterial pathogens are recognized by the innate immune system through pattern recognition receptors, such as Toll-like receptors (TLRs). Engagement of TLRs triggers signaling cascades that launch innate immune responses. Activation of MAPKs and NF-kappaB, elements of the major signaling pathways induced by TLRs, depends in most cases on the adaptor molecule MyD88. In addition, Gram-negative or intracellular bacteria elicit MyD88-independent signaling that results in production of type I interferon (IFN). Here we show that in mouse macrophages, the activation of MyD88-dependent signaling by the extracellular Gram-positive human pathogen group A streptococcus (GAS; Streptococcus pyogenes) does not require TLR2, a receptor implicated in sensing of Gram-positive bacteria, or TLR4 and TLR9. Redundant engagement of either of these TLR molecules was excluded by using TLR2/4/9 triple-deficient macrophages. We further demonstrate that infection of macrophages by GAS causes IRF3 (interferon-regulatory factor 3)-dependent, MyD88-independent production of IFN. Surprisingly, IFN is induced also by GAS lacking slo and sagA, the genes encoding cytolysins that were shown to be required for IFN production in response to other Gram-positive bacteria. Our data indicate that (i) GAS is recognized by a MyD88-dependent receptor other than any of those typically used by bacteria, and (ii) GAS as well as GAS mutants lacking cytolysin genes induce type I IFN production by similar mechanisms as bacteria requiring cytoplasmic escape and the function of cytolysins.  相似文献   

10.
目的探索乳杆菌肽聚糖免疫调节作用的机制。方法BALB/c小鼠腹腔注射乳杆菌肽聚糖,从腹腔巨噬细胞和脾淋巴细胞提取RNA,基因芯片分析基因表达情况,利用Medscan从pubmed文献摘要提取肽聚糖相关基因网络,映射芯片数据获得乳杆菌肽聚糖特异基因网络。结果乳杆菌肽聚糖主要通过TLR2-NF-κB信号通路激活炎性细胞因子的表达,但是PGRP-L可能通过降解肽聚糖对此通路有负调节作用,NF-κB的激活可能诱导NOD2表达,对此通路进行负调节。结论乳杆菌肽聚糖通过与多种受体作用诱导独特的免疫反应,维持机体免疫稳态。  相似文献   

11.
Tuberculosis associates with a wide spectrum of disease outcomes. The Beijing (Bj) lineage of Mycobacterium tuberculosis (Mtb) is suggested to be more virulent than other Mtb lineages and prone to elicit non-protective immune responses. However, highly heterogeneous immune responses were reported upon infection of innate immune cells with Bj strains or stimulation with their glycolipids. Using both in vitro and in vivo mouse models of infection, we here report that the molecular mechanism for this heterogeneity may be related to distinct TLR activations. Among this Mtb lineage, we found strains that preferentially activate TLR2, and others that also activate TLR4. Recognition of Mtb strains by TLR4 resulted in a distinct cytokine profile in vitro and in vivo, with specific production of type I IFN. We also uncover a novel protective role for TLR4 activation in vivo. Thus, our findings contribute to the knowledge of the molecular basis underlying how host innate immune cells handle different Mtb strains, in particular the intricate host-pathogen interaction with strains of the Mtb Bj lineage.  相似文献   

12.
Lipid A in LPS activates innate immunity through the Toll-like receptor 4 (TLR4)-MD-2 complex on host cells. Variation in lipid A has significant consequences for TLR4 activation and thus may be a means by which Gram-negative bacteria modulate host immunity. However, although even minor changes in lipid A structure have been shown to affect downstream immune responses, the mechanism by which the TLR4-MD-2 receptor complex recognizes these changes is not well understood. We previously showed that strain BP338 of the human pathogen Bordetella pertussis, the causative agent of whooping cough, modifies its lipid A by the addition of glucosamine moieties that promote TLR4 activation in human, but not mouse, macrophages. Using site-directed mutagenesis and an NFκB reporter assay screen, we have identified several charged amino acid residues in TLR4 and MD-2 that are important for these species-specific responses; some of these are novel for responses to penta-acyl B. pertussis LPS, and their mutation does not affect the response to hexa-acylated Escherichia coli LPS or tetra-acylated lipid IVA. We additionally show evidence that suggests that recognition of penta-acylated B. pertussis lipid A is dependent on uncharged amino acids in TLR4 and MD-2 and that this is true for both human and mouse TLR4-MD-2 receptors. Taken together, we have demonstrated that the TLR4-MD-2 receptor complex recognizes variation in lipid A molecules using multiple sites for receptor-ligand interaction and propose that host-specific immunity to a particular Gram-negative bacterium is, at least in part, mediated by very subtle tuning of one of the earliest interactions at the host-pathogen interface.  相似文献   

13.
Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S.) Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella.  相似文献   

14.
Numerous cell surface components of Listeria influence and regulate innate immune recognition and virulence. Here, we demonstrate that lipidation of prelipoproteins in Listeria monocytogenes is required to promote NF-kappaB activation via TLR2. In HeLa cells transiently expressing TLR2, L. monocytogenes and Listeria innocua mutants lacking the prolipoprotein diacylglyceryl transferase (lgt) gene are unable to induce TLR2-dependent activation of NF-kappaB, a property intrinsic to their isogenic parental strains. TLR2-dependent immune recognition is directed to secreted, soluble lipoproteins as evidenced by the sensitivity of the response to lipoprotein lipase. Studies of bone marrow-derived macrophages of C57BL/6 wild-type and TLR2-deficient mice infected with wild-type and lgt mutant strains indicate that the absence of host TLR2 receptor signaling has consequences similar to those of the absence of the bacterial TLR2 ligand, i.e., a delay in cellular immune responses directed toward the bacterium. Infection studies with the wild-type and TLR2(-/-) mice indicated attenuation of the lgt deletion mutant in both mouse strains, implying multiple roles of lipoproteins during infection. Further characterization of the Delta lgt mutant indicated that it is impaired for both invasion and intracellular survival and exhibits increased susceptibility to cationic peptides. Our studies identify lipoproteins as the immunologically active ligand of TLR2 and assign a critical role for this receptor in the recognition of these bacteria during infection, but they also reveal the overall importance of the lipoproteins for the pathogenicity of Listeria.  相似文献   

15.
《Cellular signalling》2014,26(5):942-950
Cytokine induction in response to Mycobacterium tuberculosis (Mtb) infection is critical for pathogen control, by (i) mediating innate immune effector functions and (ii) instructing specific adaptive immunity. IL-10 is an important anti-inflammatory cytokine involved in pathogenesis of tuberculosis (TB). Here, we show that TLR3, a sensor of extracellular viral or host RNA with stable stem structures derived from infected or damaged cells, is essential for Mtb-induced IL-10 production. Upon Mycobacterium bovis Bacillus Calmette–Guérin (BCG) infection, TLR3−/− macrophages expressed lower IL-10 but higher IL-12p40 production, accompanied by reduced phosphorylation of AKT at Ser473. BCG-infected TLR3−/− mice exhibited reduced IL-10 but elevated IL-12 expression compared to controls. Moreover, higher numbers of splenic Th1 cells and reduced pulmonary bacterial burden and tissue damage were observed in BCG-infected TLR3−/− mice. Finally, BCG RNA induced IL-10 in macrophages via TLR3-mediated activation of PI3K/AKT. Our findings demonstrate a critical role of TLR3-mediated regulation in the pathogenesis of mycobacterial infection involving mycobacterial RNA, which induces IL-10 through the PI3K/AKT signaling pathway.  相似文献   

16.
Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.  相似文献   

17.
We have assessed the requirements for Toll-like receptor (TLR) signaling in vivo during early infection with Listeria monocytogenes. Mice deficient for TLR2, a receptor required for the recognition of Gram-positive peptidoglycan, showed equivalent Listeria resistance to wild-type mice. However, mice deficient for MyD88, an adaptor molecule used by all TLRs, showed profound susceptibility with 3-4 logs greater Listeria burden and severe spleen and liver pathology at day 3 postinfection. Listeria-infected MyD88-deficient mice also showed markedly diminished IFN-gamma, TNF-alpha, and NO responses, despite evidence of macrophage activation and up-regulation of MHC class II molecules. We demonstrate that although minor MyD88-independent responses to live Listeria do occur, these are insufficient for normal host defense. Lastly, we performed experiments in vitro in which macrophages deficient in TLR2 or MyD88 were directly infected with Listeria: Although TLR signaling was required for macrophage NO and cytokine production in response to Listeria, handling and direct killing of Listeria by activated macrophages occurred by TLR2- and MyD88-independent mechanisms.  相似文献   

18.
The Toll-like receptor 4 (TLR4) plays a crucial role in innate inflammatory responses, as it recognizes gram-negative bacteria (or their products) and contributes greatly to host defense against invading pathogens. Though TLR4 overexpressing transgenic sheep, resistant to certain diseases related with gram-negative bacteria, had been bred in our previous research, the effects of overexpression of TLR4 on innate immune response remained unclear. In this study, TLR4 overexpressing ovine macrophages were obtained from peripheral blood, and it was found that the overexpression of TLR4 initially promoted the production of proinflammatory cytokines TNFα and IL-6 by activating TLR4-mediated IRAK4-dependent NF-κB and MAPK (JNK and ERK1/2) signaling following LPS stimulation. However, this effect was later impaired due to increased internalization of TLR4 into endosomal compartment of the macrophages. Then the overexpression of TLR4 triggered TBK1-dependent interferon-regulatory factor-3 (IRF-3) expression, which in turn led to the induction of IFN-β and IFN-inducible genes (i.e.IP10, IRG1 and GARG16). Understandably, an increased IFN-β level facilitated phosphorylation of STAT1 to induce expression of innate antiviral genes Mx1 and ISG15, suggesting that TLR4 overexpressing macrophages were equipped better against viral infection. Correspondingly, the bacterial burden in these macrophages, after infection with live S. Typhimurium, was decreased significantly. In summary, the results indicated that overexpression of TLR4 could enhance innate inflammatory responses, initiate the innate antiviral immunity, and control effectively S. Typhimurium growth in ovine macrophages.  相似文献   

19.
20.
Innate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs), of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans. These microbe-associated molecular patterns (MAMPs) display a structure based on a lipid anchor, being either an acylated cysteine, a glycosylated diacylglycerol or a mannosyl-phosphatidylinositol respectively, and having in common a diacylglyceryl moiety. A fourth class of macroamphiphile, namely lipoglycans, whose lipid anchor is made, as for lipoteichoic acids, of a glycosylated diacylglycerol unit rather than a mannosyl-phosphatidylinositol, is found in Gram-positive bacteria and produced by certain Actinobacteria, including Micrococcus luteus, Stomatococcus mucilaginosus and Corynebacterium glutamicum. We report here that these alternative lipoglycans are also recognized by TLR2 and that they stimulate TLR2-dependant cytokine production, including IL-8, TNF-α and IL-6, and cell surface co-stimulatory molecule CD40 expression by a human macrophage cell line. However, they differ by their co-receptor requirement and the magnitude of the innate immune response they elicit. M. luteus and S. mucilaginosus lipoglycans require TLR1 for recognition by TLR2 and induce stronger responses than C. glutamicum lipoglycan, sensing of which by TLR2 is dependent on TLR6. These results expand the repertoire of MAMPs recognized by TLR2 to lipoglycans based on a glycosylated diacylglycerol lipid anchor and reinforce the paradigm that macroamphiphiles based on such an anchor, including lipoteichoic acids and alternative lipoglycans, induce TLR2-dependant innate immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号