首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Snir M  Ofir R  Elias S  Frank D 《The EMBO journal》2006,25(15):3664-3674
Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transitions. Ectopic XLPOU91 expression in Xenopus embryos inhibits FGF induction of Brachyury (Xbra), eliminating mesoderm, whereas neural induction is unaffected. XLPOU91 knockdown induces high levels of Xbra expression, with blastopore closure being delayed to later neurula stages. In morphant ectoderm explants, mesoderm responsiveness to FGF is extended from blastula to gastrula stages. The initial expression of mesoderm and endoderm markers is normal, but neural induction is abolished. Churchill (chch) and Sip1, two genes regulating neural competence, are not expressed in XLPOU91 morphant embryos. Ectopic Sip1 or chch expression rescues the morphant phenotype. Thus, XLPOU91 epistatically lies upstream of chch/Sip1 gene expression, regulating the competence transition that is critical for neural induction. In the absence of XLPOU91 activity, the cues driving proper embryonic cell fates are lost.  相似文献   

3.
4.
BACKGROUND: The mouse anterior visceral endoderm, an extraembryonic tissue, expresses several genes essential for normal development of structures rostral to the anterior limit of the notochord and has been termed the head organizer. This tissue also has heart-inducing activity and expresses mCer1 which, like its Xenopus homolog cerberus, can induce markers of cardiac specification and anterior neural tissue when ectopically expressed. We investigated the relationship between head and heart induction in Xenopus embryos, which lack extraembryonic tissues. RESULTS: We found three regions of gene expression in the Xenopus organizer: deep endoderm, which expressed cerberus; prechordal mesoderm, which showed overlapping but non-identical expression of genes characteristic of the murine head organizer, such as XHex and XANF-1; and leading-edge dorsoanterior endoderm, which expressed both cerberus and a subset of the genes expressed by the prechordal mesoderm. Microsurgical ablation of the cerberus-expressing endoderm decreased the incidence of heart, but not head, formation. Removal of prechordal mesoderm, in contrast, caused deficits of anterior head structures. Finally, although misexpression of cerberus induced ectopic heads, it was unable to induce genes thought to participate in head induction. CONCLUSIONS: In Xenopus, the cerberus-expressing endoderm is required for heart, but not head, inducing activity. Therefore, this tissue is not the topological equivalent of the murine anterior visceral endoderm. We propose that, in Xenopus, cerberus is redundant to other bone morphogenetic protein (BMP) and Wnt antagonists located in prechordal mesoderm for head induction, but may be necessary for heart induction.  相似文献   

5.
The Brachyury (T) gene is required for mesoderm formation in the mouse. In this paper we describe the cloning and expression of a Xenopus homolog of Brachyury, Xbra. As with Brachyury in the mouse, Xbra is expressed in presumptive mesodermal cells around the blastopore, and then in the notochord. We show that expression of Xbra occurs as a result of mesoderm induction in Xenopus, both in response to the natural signal and in response to the mesoderm-inducing factors activin A and basic FGF. Expression of Xbra in response to these factors is rapid, and will occur in dispersed cells and in the presence of a protein synthesis inhibitor, indicating that this is an "immediate-early" response to mesoderm induction.  相似文献   

6.
Brachyury, the blastopore and the evolution of the mesoderm   总被引:3,自引:0,他引:3  
The role of Brachyury and other T-box genes in the differentiation of mesoderm and endoderm of vertebrates is well established. Recently, homologues of Brachyury have been isolated from an increasing number of diverse organisms ranging from Cnidaria to vertebrates and insects. Comparative expression and function analysis allows the origin of the mesoderm and the evolution of the developmental role of Brachyury gene family in metazoans to be traced. The data suggest that an ancestral function of Brachyury was to designate a blastoporal region that had distinct properties in induction and axis elongation. A subset of blastoporal cells expressing Brachyury and other genes that convey specific mesodermal functions may have segregated as a distinct cell population from this region in the course of mesoderm evolution.  相似文献   

7.
8.
The canonical, beta-catenin-dependent Wnt pathway is a crucial player in the early events of Xenopus development. Dorsal axis formation and mesoderm patterning are accepted effects of this pathway, but the regulation of expression of genes involved in mesoderm specification is not. This conclusion is based largely on the inability of the Wnt pathway to induce mesoderm in animal cap explants. Using injections of inhibitors of canonical Wnt signaling, we demonstrate that expression of the general mesodermal marker Brachyury (Xbra) requires a zygotic, ligand-dependent Wnt activity throughout the marginal zone. Analysis of the Xbra promoter reveals that putative TCF-binding sites mediate Wnt activation, the first sites in this well-studied promoter to which an activation role can be ascribed. However, established mesoderm inducers like eFGF and activin can bypass the Wnt requirement for Xbra expression. Another mesoderm promoting factor, VegT, activates Xbra in a Wnt-dependent manner. We also show that the activin/nodal signaling is necessary for ectopic Xbra induction by the Wnt pathway, but not by VegT. Our data significantly change the understanding of Brachyury regulation in Xenopus, implying the existence of an unknown zygotic Wnt ligand in Spemann's organizer. Since Brachyury is considered to have a major role in mesoderm formation, it is possible that Wnts might play a role in mesoderm specification, in addition to patterning.  相似文献   

9.
10.
11.
We have used whole-mount in situ hybridisation to identify genes expressed in the somitic mesoderm during Xenopus early development. We report here the analysis of eight genes whose expression pattern has not been described previously. They include the Xenopus homologues of eukaryotic initiation factor 2beta, methionine adenosyltransferase II, serine dehydratase, alpha-adducin, oxoglutarate dehydrogenase, fragile X mental retardation syndrome related protein 1, monocarboxylate transporter and voltage-dependent anion channel 1. Interestingly, these genes exhibit very dynamic expression pattern during early development. At early gastrula stages several genes do not show localised expression pattern, while other genes are expressed in the marginal mesoderm or in ectoderm. As development proceeds, the expression of these genes is gradually restricted to different compartments of somite. This study thus reveals an unexpected dynamic expression pattern for various genes with distinct function in vertebrates.  相似文献   

12.
13.
Endodermal Nodal-related signals and mesoderm induction in Xenopus   总被引:7,自引:0,他引:7  
In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derrière, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.  相似文献   

14.
To elucidate the mechanisms of early heart morphogenesis in Xenopus laevis, we examined the effect of endoderm on heart morphogenesis in the early Xenopus neurula. Explants of anterior ventral (presumptive heart) mesoderm from early neurula were cultured alone or in combination with endoderm dissected from various regions. Heart formation was scored by an original heart index based on morphology. These explant studies revealed that anterior ventral endoderm plays a critical role in heart morphogenesis. Furthermore, we found that it was possible to confer this heart-forming ability on posterior ventral endoderm by the injection of poly(A)+ RNA from stage 13 anterior endoderm. These results imply that the heart formative factor(s) is localized in the anterior endoderm of the early neurula and that at least part of this activity is encoded by mRNA(s).  相似文献   

15.
Homologues of the murine Brachyury gene have been shown to be involved in mesoderm formation in several vertebrate species. In frogs, the Xenopus Brachyury homologue, Xbra, is required for normal formation of posterior mesoderm. We report the characterisation of a second Brachyury homologue from Xenopus, Xbra3, which has levels of identity with mouse Brachyury similar to those of Xbra. Xbra3 encodes a nuclear protein expressed in mesoderm in a temporal and spatial manner distinct from that observed for Xbra. Xbra3 expression is induced by mesoderm-inducing factors and overexpression of Xbra3 can induce mesoderm formation in animal caps. In contrast to Xbra, Xbra3 is also able to cause the formation of neural tissue in animal caps. Xbra3 overexpression induces both geminin and Xngnr-1, suggesting that Xbra3 can play a role in the earliest stages of neural induction. Xbra3 induces posterior nervous tissue by an FGF-dependent pathway; a complete switch to anterior neural tissue can be effected by the inhibition of FGF signalling. Neither noggin, chordin, follistatin, nor Xnr3 is induced by Xbra3 to an extent different from their induction by Xbra nor is BMP4 expression differentially affected.  相似文献   

16.
We cloned Xenopus Strabismus (Xstbm), a homologue of the Drosophila planar cell or tissue polarity gene. Xstbm encodes four transmembrane domains in its N-terminal half and a PDZ-binding motif in its C-terminal region, a structure similar to Drosophila and mouse homologues. Xstbm is expressed strongly in the deep cells of the anterior neural plate and at lower levels in the posterior notochordal and neural regions during convergent extension. Overexpression of Xstbm inhibits convergent extension of mesodermal and neural tissues, as well as neural tube closure, without direct effects on tissue differentiation. Expression of Xstbm(DeltaPDZ-B), which lacks the PDZ-binding region of Xstbm, inhibits convergent extension when expressed alone but rescues the effect of overexpressing Xstbm, suggesting that Xstbm(DeltaPDZ-B) acts as a dominant negative and that both increase and decrease of Xstbm function from an optimum retards convergence and extension. Recordings show that cells expressing Xstbm or Xstbm(DeltaPDZ-B) fail to acquire the polarized protrusive activity underlying normal cell intercalation during convergent extension of both mesodermal and neural and that this effect is population size-dependent. These results further characterize the role of Xstbm in regulating the cell polarity driving convergence and extension in Xenopus.  相似文献   

17.
18.
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.  相似文献   

19.
20.
The prevalent model for the generation of axial polarity in mouse embryos proposes that a radial to a linear transition in the expression of primitive streak markers precedes the formation of the primitive streak on one side of the epiblast. This model contrasts with the models of mesoderm formation in other vertebrates as it suggests that the primitive streak is initially established in a radial pattern rather than a localized region of the epiblast. Here, we examine the proposed correlation between the expression of Brachyury and Wnt3, two genes reported as expressed radially in the proximal epiblast, with the movements of proximal anterior epiblast cells at stages leading to the formation of the primitive streak. Our results reveal that neither Brachyury nor Wnt3 forms a ring of expression in the proximal epiblast as previously thought. In embryos dissected between 5.5 and 6.5 dpc, Brachyury is first expressed in the distal extra-embryonic ectoderm and subsequently on one side of the epiblast. Wnt3 expression is evident first in the posterior visceral endoderm of 5.5 dpc embryos and later in the posterior epiblast. Lineage analysis shows that the movements of the proximal epiblast do not restrict Brachyury expression to the posterior epiblast. Our data suggest a model whereby the localized expression of these genes in the posterior epiblast, and hence the formation of the primitive streak, is the result of local cell-cell interactions in the future posterior portion of the egg cylinder rather than regionalization of a radial pattern of expression in proximal epiblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号