首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Indica and japonica rice (Oryza sativa L.) plants were transformed by particle bombardment with the Itr1 gene encoding the barley trypsin inhibitor BTI-CMe, under the control of its own promoter that confers endosperm specificity, and the maize ubiquitin promoter. From 38 independent transgenic lines of indica (breeding line IR58) and 15 of the japonica (cv Senia) selected, 22 and 11, respectively, expressed the barley inhibitor at detectable levels. The transgene was correctly translated as indicated by western blot analysis with a level of expression in R3 seeds up to 0.31% (IR58) and 0.43% (Senia) of the total extracted protein. The functional integrity of BTI-CMe was confirmed by trypsin activity assays in liquid media and by activity staining gels, performed with seed extracts. The significant reduction of the survival rate of the rice weevil (Sitophilus oryzae, Coleoptera: Curculionidae) reared on homozygous transgenic indica and japonica rice seeds expressing the BTI-CMe, compared to non-transformed controls, and the decrease in the trypsin-like activity of insect crude midgut extracts, confirmed the utility of this proteinase inhibitor gene for the control of important storage pests.  相似文献   

2.
Transformants of Arabidopsis thaliana can be generated without using tissue culture techniques by cutting primary and secondary inflorescence shoots at their bases and inoculating the wound sites with Agrobacterium tumefaciens suspensions. After three successive inoculations, treated plants are grown to maturity, harvested and the progeny screened for transformants on a selective medium. We have investigated the reproducibility and the overall efficiency of this simple in planta transformation procedure. In addition, we determined the T-DNA copy number and inheritance in the transformants and examined whether transformed progeny recovered from the same Agrobacterium-treated plant represent one or several independent transformation events. Our results indicate that in planta transformation is very reproducible and yields stably transformed seeds in 7–8 weeks. Since it does not employ tissue culture, the in planta procedure may be particularly valuable for transformation of A. thaliana ecotypes and mutants recalcitrant to in vitro regeneration. The transformation frequency was variable and was not affected by lower growth temperature, shorter photoperiod or transformation vector. The majority of treated plants gave rise to only one transformant, but up to nine siblings were obtained from a single parental plant. Molecular analysis suggested that some of the siblings originated from a single transformed cell, while others were descended from multiple, independently transformed germ-line cells. More than 90% of the transformed progeny exhibited Mendelian segregation patterns of NPTII and GUS reporter genes. Of those, 60% contained one functional insert, 16% had two T-DNA inserts and 15% segregated for T-DNA inserts at more than two unlinked loci. The remaining transformants displayed non-Mendelian segregation ratios with a very high proportion of sensitive plants among the progeny. The small numbers of transformants recovered from individual T1 plants and the fact that none of the T2 progeny were homozygous for a specific T-DNA insert suggest that transformation occurs late in floral development.National Research Council of Canada Publication No. 38003  相似文献   

3.
Three types of transgenic tobacco plants were acquired by separate transformation or co-transformation of a vacuolar Na+/H+ antiporter gene, SeNHX1, and a betaine synthesis gene, BADH. When exposed to 200 mM NaCl, the dual gene-transformed plants displayed greater accumulation of betaine and Na+ than their wild-type counterparts. Photosynthetic rate and photosystem II activity in the transgenic plants were less affected by salt stress than wild-type plants. Transgenic plants exhibited a greater increase in osmotic pressure than wild-type plants when exposed to NaCl. More importantly, the dual gene transformed plants accumulated higher biomass than either of the single transgenic plants under salt stress. Taken together, these findings indicate that simultaneous transformation of BADH and SeNHX1 genes into tobacco plants can enable plants to accumulate betaine and Na+, thus conferring them more tolerance to salinity than either of the single gene transformed plants or wild-type tobacco plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
Overexpression of the IAGLU gene from maize (ZmIAAGLU) in Arabidopsis thaliana, under the control of the CaMV 35S promoter, inhibited root but not hypocotyl growth of seedlings in four different transgenic lines. Although hypocotyl growth of seedlings and inflorescence growth of mature plants was not affected, the leaves of mature plants were smaller and more curled as compared to wild-type and empty vector transformed plants. The rosette diameter in transgenic lines with higher ZmIAGLU expression was also smaller compared to the wild type. Free indole-3-acetic acid (IAA) levels in the transgenic plants were comparable to the wild type, even though a decrease in free IAA levels might be expected from overexpression of an IAA-conjugate–forming enzyme. IAA-glucose levels, however, were increased in transgenic lines compared to the wild type, indicating that the ZmIAGLU gene product is active in these plants. In addition, three different 35SZmIAGLU lines showed less inhibition of root growth when cultivated on increasing concentrations of IAA but not indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Feeding IAA to transgenic lines resulted in increased IAA-glucose synthesis, whereas the levels of IAA-aspartate and IAA-glutamine formed were reduced compared to the wild type. Our results show that IAA homeostasis can be altered by heterologous overexpression of a conjugate-forming gene from maize.  相似文献   

6.
Embryo axes excised from mature seeds of pea (Pisum sativum L.) cv. ‘Sponsor’ were used as explants for Agrobacterium-mediated transformation using pGreenII 0229 binary vectors. The vectors harbored a chimeric chitinase gene (chit30), driven by the constitutive 35S promoter or the elicitor inducible stilbene synthase (vst) promoter from grape (Vitis vinifera L.). The secretion signal of the bacterial chitinase gene from Streptomyces olivaceoviridis ATCC 11238 (DSM 41433) was replaced by the A. thaliana basic chitinase leader sequence. Functional properties of the recombinant gene were tested in tobacco as a model system before the long process of pea transformation was undertaken. Several transgenic pea clones were obtained and the transgenic nature confirmed by different molecular methods. The accumulation and activity of chitinase in stably transformed plants were examined by Western blot analysis and in-gel assays, which showed the presence of an additional 3 isoform bands. Using in vitro bioassays with Trichoderma harzanium as a model, we found an inhibition or delay of hyphal extension, which might indicate enhanced antifungal activity compared with non-transformed pea plants. Up to the 4th generation, the transgenic plants did not show any phenotypic alterations compared with non-transgenic control plants.  相似文献   

7.
Papaya (Carica papaya L.) production is affected by low temperatures that occur periodically in the subtropics. The C-repeat binding factor (CBF) gene family is known to induce the cold acclimation pathway in Arabidopsis thaliana. Embryogenic papaya cultures were induced from hypocotyls of “Sunrise Solo” zygotic embryos on semisolid induction medium. The CBF 1/CBF 3 genes along with the neomycin phosphotransferase (NPT II) gene were placed under the control of the CaMV 35 S promoter and introduced into a binary vector pGA 643. Embryogenic cultures were transformed with Agrobacterium strain GV 3101 harboring pGA 643. After selection of transformed embryogenic cultures for resistance to 300 mg l−1 kanamycin, somatic embryo development was initiated and transgenic plants were regenerated. The presence of the CBF transgenes in regenerated plants was confirmed by Southern blot hybridization. The papaya and the related cold-tolerant Vasconcella genomes were probed for the presence of cold inducible sequences using polymerase chain reaction (PCR). Possible cold inducible sequences were present in the Vasconcella genome but were absent in the Carica genome.  相似文献   

8.
The aim of our study was to identify the highest expressing rubisco small subunit (RbcS) promoters (pRbcS) from the cotyledons of germinating seedlings of Brassica rapa var. oleifera to drive high-level and preferably stage-specific transgenic protein expression in Brassicaceae plants. We cloned four new pRbcS promoters using several approaches, including the construction of a cDNA library and use of genome walking technique. Real-time PCR analysis of RbcS mRNA expression clearly showed that two of these promoters exhibited the highest activity on the germination stage of plant development. We used gusA expression as a reporter of promoter activity in Brassica napus and Nicotiana tabacum plants that were transformed with the constructs using an Agrobacterium-mediated transformation strategy. The mRNA level of RbcS and of gusA was quantified in transformed plants. The data obtained demonstrate that the promoter most active in seedlings under native conditions was also most active in transgenic constructs at the same stage of plant development. The fine structure of the promoters is discussed herein.  相似文献   

9.
Summary Datura arborea and D. sanguinea hairy roots were produced by cocultivation of leaf fragments with Agrobacterium rhizogenes strain NCPP 1855. Adventitious buds emerged spontaneously, without exogenous growth regulators, from seven hairy root clones of D. arborea and from one hairy root clone of D. sanguinea. Regenerated plants were successfully acclimatized in the greenhouse. The integration of the bacterial TL-DNA into the genome of the putative transformed plants was confirmed by Southern blot analysis. Transgenic plants displayed increased ability to root in vivo. Morphological traits with relevant ornamental value like plant height, leaf number, size and shape, internode number, and internode length were also affected. Transformation by wild-type Ri TL-DNA provided the chance to study plant growth and differentiation and to select improved genotypes.  相似文献   

10.
To establish a procedure for Agrobacterium tumefaciens-mediated transformation of golden pothos (Epipremnum aureum) plants, the effects of selection antibiotics and the preculture period of stem explants before A. tumefaciens infection were examined. Explants were co-cultivated with A. tumefaciens EHA105, harboring the plasmid pGWB2/cGUS, on a somatic embryo-inducing medium supplemented with acetosyringone. Resulting transgenic somatic embryos were screened on an antibiotic selection medium, and the transgenic pothos plants were regenerated on a germination medium. Hygromycin was the optimum selection antibiotic tested. The preculture period significantly affected the transformation efficiency, with explants precultured for one-day showing the best efficiency (5–30%). Both transformed hygromycin-resistant embryos and regenerated plants showed β-glucuronidase activity. Southern blot analysis confirmed transgene integration into the pothos genome. This reproducible transformation system for golden pothos may enable the molecular breeding of this very common indoor plant.  相似文献   

11.
Three types of transgenic plants of Solanum tuberosum cvs. Kamyk and Oreb, and Nicotiana tabacum cvs. Maryland Mammoth and Trapezond were selected according to intensity of introduced ipt gene expression and resulting amount of synthesised cytokinins (CKs). In comparison with controls, original transgenic regenerants grown in vitro showed a massive increase of CK contents, in tobacco by 379 % and in potato by 159 % (MAS). Potato grown in soil from tubers of transgenic plants demonstrated a moderate increase (44 %) of CK contents (MOD). Transgenic tobacco grown from seeds in vitro did not show any significant change in CK contents (NOT). Initial (RuBPCi and RuBPOi) and total (RuBPCt) activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), and the activity of phosphoenolpyruvate carboxylase (PEPC) were not significantly affected by the transformation in the NOT plants. In the MOD plants, the RuBPCO activities were stimulated by up to 34 % whereas the PEPC activity was decreased by 17 %. On the other hand, all the measured enzyme activities were 32 – 91 % lower in the MAS. Leaf area, fresh and dry masses, and chlorophyll and soluble protein contents also went down with increasing CK amounts in the transformants. Dependence of RuBPCi/RuBPOi and RuBPCt/PEPC ratios on the relative CK amounts in transgenic plants revealed that the individual enzyme activities were not affected uniformly. Endogenous CK contents in the MAS thus apparently exceeded an optimum needed for positive effects on many physiological traits and became a stress factor for such plants.  相似文献   

12.
Four long-term embryogenic lines of Asparagus officinalis were co-cultured with the hypervirulent Agrobacterium tumefaciens strain AGL1Gin carrying a uidA gene and an nptII gene. 233 embryogenic lines showing kanamycin resistance and -glucuronidase (GUS) activity were obtained. Transformation frequencies ranged from 0.8 to 12.8 transformants per gram of inoculated somatic embryos, depending on the line. Southern analysis showed that usually 1 to 4 T-DNA copies were integrated. Regenerated plants generally exhibited the same insertion pattern as the corresponding transformed embryogenic line. T1 progeny were obtained from crosses between 6 transformed plants containing 3 or 4 T-DNA copies and untransformed plants. They were analysed for GUS activity and kanamycin resistance. In three progenies, Mendelian 1:1 segregations were observed, corresponding to one functional locus in the parent transgenic plants. Southern analysis confirmed that T-DNA copies were inserted at the same locus. Non-Mendelian segregations were observed in the other three progenies. T2 progeny also exhibited non-Mendelian segregations. Southern analysis showed that GUS-negative and kanamycin-sensitive plants did not contain any T-DNA, and therefore inactivation of transgene expression could not be responsible for the abnormal segregations.  相似文献   

13.
We have investigated the use of the tetracycline-dependent gene expression system to regenerate and propagate tobacco plants transformed with a gene whose product — when highly expressed — interferes with regeneration and/or further reproduction. Plants transformed with the Agrobacterium rhizogenes rolB gene under the control of the tetracycline-dependent expression system were phenotypically indistinguishable from wild type owing to efficient repression of the promoter. Induction of the rolB gene with tetracycline led to high-level expression of the rolB mRNA, which resulted in extremely stunted plants with necrotic and wrinkled leaves that did not develop a floral meristem. Upon cessation of tetracycline treatment healthy shoots developed even from severely affected meristems. Data on the dose response of the rolB phenotype as a function of tetracycline concentration demonstrate that the tetracycline-dependent gene expression system can be used to modulate the manifestation of a particular phenotype.  相似文献   

14.
Transgenic Arabidopsis thaliana plants which express genes encoding insect, Dendroides canadensis, antifreeze proteins (AFP) were produced by Agrobacterium-mediated transformation. The antifreeze protein genes, both with and without the signal peptide sequence (for protein secretion), were expressed in transformed plants. Thermal hysteresis activity (indicating the presence of active AFPs) was present in protein extracts from plants expressing both proteins and was also detected in leaf apoplast fluid from plants expressing AFPs with the signal peptide. Transgenic lines did not demonstrate improved ability to survive freezing when compared to wild-type. However, when cooled under four different regimes, transgenic lines with AFPs in the apoplast fluid froze at significantly lower temperatures than did wild-type, especially in the absence of extrinsic nucleation events.  相似文献   

15.
Summary Two commercial wheat cultivars with low embryogenesis efficiencies, AC Karma and Hy417, were transformed by the bombardment of isolated scutella with two gene constructs. Three AC Karma plants (433, 436, and 437) carrying plasmid pRC62 containing a gus:npt fusion gene, and one Hy417 plant (438) carrying plasmid pBARGUS containing a bar gene and a gusA gene were recovered and characterized. Presence of transgenes in T0 and T1 plants was confirmed by both PCR and Southern hybridization. Copy number of transgenes varied from one to six in these four plants. The inheritance of transgenes in the progeny was characterized. The gusA gene and its activity in AC Karma plant 436 and bar gene and its activity in Hy417 plant 438 segregated in the selfed T1 progeny in a Mendelian 3:1 ratio, but gusA gene and its activity in AC Karma plants 433 and 437 segregated in selfed T1 progeny in a non-Mendelian 1:1 ratio. The gusA activity in all three AC Karma plants was stably transmitted to selfed T2 or T3 progenies. The levels of gusA and nptII activities in nine T1 plants from AC Karma plant 437 were also determined. A GusA fluorometric assay indicated that gusA activity in the nine T1 plants increased by 2.5–7.2-fold compared with the nontransformed control, while and NptII ELISA assay detected nptII activity only in two of the nine T1 plants, suggesting the nptII gene was silenced in the other seven T1 plants.  相似文献   

16.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

17.
Summary The response of oilseed rape cultivars to infection with Agrobacterium tumefaciens and A. rhizogenes and the possibility of regenerating genetically transformed oilseed rape plants were examined. The frequency at which Agrobacterium induced galls or hairy-roots on in vitro cultured plants ranged from 10% to 70%, depending on the cultivar. From galls induced by the tumorigenic strain T37, known to be strongly shoot inducing on tobacco, roots developed frequently. Occasionally, shoots formed and some of these produced tumour cell specific nopaline. Attempts to grow the transformed shoots into plants have so far been unsuccessful. Whole plants transformed with Ri-T-DNA, however, were regenerated. These had crinkled leaves and abundant, frequently branching roots that showed reduced geotropism, similar to previously isolated Ri T-DNA transformed tobacco and potato plants. The transformed oilseed rape plants flowered, but failed to form seeds.  相似文献   

18.
Hairy root cultures of Atropa belladonna L. were established by infection either with Agrobacterium rhizogenes ATCC 15834 or MAFF 03-01724, and transgenic plants were obtained from both hairy root cultures. Doubly transformed roots were induced by re-infection of the leaf segments of transgenic Atropa belladonna plants (A. rhizogenes 15834) with MAFF 03-01724. Shoots and viviparous leaves were regenerated from the doubly transformed roots. The genetic transformation was determined by the opine assay (agropine, mannopine and/or mikimopine) and polymerase chain reaction. Physiological changes and tropane alkaloid biosynthesis in the hairy roots (singly and doubly transformed) were investigated. The alkaloid content in the doubly transformed root strain was intermediate as compared to the root strains which were singly transformed. On the other hand endogenous IAA levels in doubly transformed roots were significantly decreased compared to both singly transformed roots.Abbreviations BA benzyladenine - IAA indoleacetic acid - NAA naphthaleneacetic acid - PCR polymerase chain reaction - t-ZR trans-zeatin  相似文献   

19.
Chimeric genes consisting of the cauliflower mosaic virus 35S promoter, a CDNA encoding a small GTP-binding protein from Arabidopsis thaliana (ara-2 or ara-4) and the terminator of the nopaline synthase gene were cloned into a binary vector. Tobacco leaf tissues were transformed with this plasmid via Agrobacterium-mediated transformation. Transgenic plants possessing either ara-2 or ara-4 occasionally showed morphological abnormalities in leaves and other organs. However, such alterations were not always associated with co-transferred characters, such as kanamycin tolerance, and they arose in no more than 10% of the transgenic plants. Such phenomena were also observed in the progenies of the primary transgenic plants. Despite such unusual inheritance of the phenotypic abnormalities, GTP-binding activity of the inserted ara gene products was detected in all plants tested.  相似文献   

20.
S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) is a key regulatory enzyme in the polyamine biosynthetic pathway. Numerous studies have shown that the enzyme activity and polyamine levels are generally correlated with cellular growth in plants, animals and bacteria. In order to gain more insight into the role of polyamines in plants, human SAMDC cDNA under control of the 35S promoter of cauliflower mosaic virus, along with a neomycin phosphotransferase gene, was transferred to tobacco (Nicotiana tabacum cv. Xanthi) viaAgrobacterium tumefaciens. Transgenic plants showed the presence of human SAMDC mRNA and a 2-4-fold increase in SAMDC activity. In the transformed tissues, putrescine levels were significantly reduced, while spermidine content was 2–3 times higher than the control tissues. Cellular spermine content was either increased or remained unchanged. Excised leaf segments from transformed plants frequently produced shoots even on callus inducing medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号