首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   7篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1988年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有72条查询结果,搜索用时 203 毫秒
1.

Background  

Sepsis (bloodstream infection) is the leading cause of death in non-surgical intensive care units. It is diagnosed in 750,000 US patients per annum, and has high mortality. Current understanding of sepsis is predominately observational and correlational, with only a partial and incomplete understanding of the physiological dynamics underlying the syndrome. There exists a need for dynamical models of sepsis progression, based upon basic physiologic principles, which could eventually guide hourly treatment decisions.  相似文献   
2.
The purpose of this work was to develop a combined remodeling-to-fracture finite element model allowing for the combined simulation of human proximal femur remodeling under a given boundary conditions followed by the simulation of its fracture behaviour under quasi-static load. The combination of remodeling and fracture simulation into one unified model consists in considering that the femur properties resulting from the remodeling simulation correspond to the initial state for the fracture prediction. The remodeling model is based on a coupled strain and fatigue damage stimulus approach. The fracture model is based on continuum damage mechanics in order to predict the progressive fracturing process, which allows to predict the fracture pattern and the complete force-displacement curve under quasi-static load. To investigate the potential of the proposed unified remodeling-to-fracture model, we performed remodeling simulations on a 3D proximal femur model for a duration of 365 days followed by a side fall fracture simulation reproducing.  相似文献   
3.

Background  

The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank.  相似文献   
4.

Background

Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity.

Results

To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR “gatekeeper” loci sharing syntenic orthologs across all analyzed genomes.

Conclusion

By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-966) contains supplementary material, which is available to authorized users.  相似文献   
5.
We present evidence that Anabaena PCC7120 (A.7120) strains expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis (Bti) have a strong potential for biotechnological application. Characterization of two 4-year-old recombinant A.7120 clones constructed previously in our laboratory [clone 7 and clone 11, each carrying three Bti genes (cry4Aa, cry11Aa, and p20)] revealed three facts. First, the Bti genes were stable in A.7120 even in the absence of antibiotic selection when the genes were integrated in the chromosome (in clone 11); and the genes were also stable as plasmid-borne constructs (in clone 7), provided the cultures were maintained under continued selection. Second, clone 7 (kept under selection) and clone 11 (either kept or not kept under selection) continued to be mosquitocidal through 4 years of culture. Third, growth of the recombinant clones was comparable to the wild type under optimal growth conditions, indicating that growth was not compromised by the expression of toxin genes. These results clear the way for the development of mass production techniques for A.7120 strains expressing Bti toxin genes.  相似文献   
6.
7.
Competition between spermatozoa of rival males to gain fertilizations has led to a wide array of modifications in sperm structure and function. Sperm cells of most muroid rodents have hook‐shaped extensions in the apical–ventral tip of the head, but the function of this structure is largely unknown. These ‘hooks’ may facilitate aggregation of spermatozoa in so‐called ‘trains’, as an adaptation to sperm competition, because sperm in trains may swim faster than free‐swimming cells. However, there is controversy regarding the role of the hook in train formation, and in relation to whether it is selected by sperm competition. We examined spermatozoa from muroid rodents with varying levels of sperm competition to assess whether (i) sperm aggregates are common in these taxa, (ii) presence of a hook relates to the formation of sperm aggregations, and (iii) formation of sperm aggregations is explained by sperm competition. Our analyses in 25 muroid species revealed that > 92% of spermatozoa swim individually in all species, with the exception of the wood mouse, Apodemus sylvaticus, which has ~50% spermatozoa swimming freely. Species with hooked spermatozoa had higher sperm competition levels and longer sperm than species whose sperm lack a hook. Neither the presence of hook nor sperm competition levels were related to the percentage of sperm in aggregations. Thus, (i) sperm aggregates in muroid rodents are an exceptional trait found only in a few species, (ii) evolution of the sperm hook is associated to sperm competition levels, but (iii) the hook is unlikely to be related to the formation of sperm aggregates. The evolutionary significance of the sperm head hook thus remains elusive, and future studies should examine potential roles of this pervasive structure in sperm's hydrodynamic efficiency and sperm–female tract interactions.  相似文献   
8.
Psychrobacter arcticus strain 273-4, which grows at temperatures as low as −10°C, is the first cold-adapted bacterium from a terrestrial environment whose genome was sequenced. Analysis of the 2.65-Mb genome suggested that some of the strategies employed by P. arcticus 273-4 for survival under cold and stress conditions are changes in membrane composition, synthesis of cold shock proteins, and the use of acetate as an energy source. Comparative genome analysis indicated that in a significant portion of the P. arcticus proteome there is reduced use of the acidic amino acids and proline and arginine, which is consistent with increased protein flexibility at low temperatures. Differential amino acid usage occurred in all gene categories, but it was more common in gene categories essential for cell growth and reproduction, suggesting that P. arcticus evolved to grow at low temperatures. Amino acid adaptations and the gene content likely evolved in response to the long-term freezing temperatures (−10°C to −12°C) of the Kolyma (Siberia) permafrost soil from which this strain was isolated. Intracellular water likely does not freeze at these in situ temperatures, which allows P. arcticus to live at subzero temperatures.Temperature is one of the most important parameters that determine the distribution and extent of life on earth, and it does this by affecting cell structure and function. High temperatures break covalent bonds and ionic interactions between molecules, inactivating proteins and disrupting cell structures. Low temperatures reduce biochemical reaction rates and substrate transport and induce the formation of ice that damages cell structures. Not surprisingly, an organism''s compatibility with the temperature of its habitat is ultimately determined by its underlying genetic architecture.The strong emphasis in research on mesophile biology (temperatures in the 20°C to 37°C range) has given us a misimpression of the importance of cold on earth. However, 70% of the Earth''s surface is covered by oceans with average temperatures between 1°C and 5°C (11), 20% of the Earth''s terrestrial surface is permafrost (47), and a larger portion of the surface undergoes seasonal freezing, making our planet a predominantly cold environment. Hence, cold adaptation in the microbial world should be expected (55).Permafrost is defined as soils or sediments that are continuously exposed to a temperature of 0°C or less for at least 2 years (44). Permafrost temperatures range from −10°C to −20°C in the Arctic and from −10°C to −65°C in the Antarctic, and permafrost has low water activity, often contains small amounts of carbon (0.85 to 1%), and is subjected to prolonged exposure to damaging gamma radiation from 40K in soil minerals (49). Liquid water occurs as a very thin, salty layer surrounding the soil particles in the frozen layer. Despite the challenges of the permafrost, a variety of microorganisms successfully colonize this environment, and many microorganisms have been isolated from it (54, 70). The bacterial taxa most frequently isolated from the Kolyma permafrost of northeast Siberia include Arthrobacter, Exiguobacterium, Flavobacterium, Sphingomonas, and Psychrobacter (71). Rhode and Price (56) proposed that microorganisms can survive in frozen ice for very long periods due to the very thin film of water surrounding each cell that serves as a reserve of substrates. Permafrost is a more favorable environment than ice as a result of its heterogeneous soil particles and larger reservoirs of nutrients.The genus Psychrobacter comprises a group of Gram-negative, rod-shaped, heterotrophic bacteria, and many Psychrobacter species are capable of growth at low temperatures. Members of this genus can grow at temperatures between −10°C and 42°C, and they have frequently been isolated from various cold environments, including Antarctic sea ice, ornithogenic soil and sediments, the stomach contents of Antarctic krill (Euphausia), deep seawater, and permafrost (9, 36, 57, 70, 71, 76; http://www.bacterio.cict.fr/p/psychrobacter.html). Psychrobacter arcticus 273-4 is a recently described species (4) that was isolated from a 20,000- to 30,000-year-old continuously frozen permafrost horizon in the Kolyma region in Siberia that was not exposed to temperatures higher than 4°C during isolation (70). This strain, the type strain of the species, grows at temperatures ranging from −10°C to 28°C, has a generation time of 3.5 days at −2.5°C, exhibits excellent long-term survival under freezing conditions, and has temperature-dependent physiological modifications in membrane composition and carbon source utilization (50). The fact that Psychrobacter has been found to be an indicator genus for permafrost and other polar environments (66) suggests that many of its members are adapted to low temperatures and increased levels of osmotica and have evolved molecular-level changes that aid survival at low temperatures.Early studies on cold adaptation in microorganisms revealed physiological strategies to deal with low temperatures, such as changes in membrane saturation, accumulation of compatible solutes, and the presence of cold shock proteins (CSPs) and many other proteins with general functions (62). However, many of the studies were conducted with mesophilic microorganisms, which limits the generality of the conclusions. We addressed the question of cold adaptation by studying microorganisms isolated from subzero environments using physiologic and genomic methods. We chose P. arcticus as our model because of its growth at subzero temperatures and widespread prevalence in permafrost. This paper focuses on the more novel potential adaptations.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号