首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ovipositional patterns of the heteronomous hyperparasitoid Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) in the presence of its primary host Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae), and in the presence or absence of conspecific and heterospecific secondary hosts (Encarsia formosa Gahan andEretmocerus mundus Mercet; Hymenoptera: Aphelinidae) were examined to assess host species preferences. Host preferences by heteronomous hyperparasitoids may affect the relative abundance of co-occurring parasitoid species and may influence host population suppression by the parasitoid community. Four combinations of hosts were tested: (1) B. argentifolii, E. mundus, and E. formosa, (2) B. argentifolii, E. formosa, and E. pergandiella, (3) B. argentifolii, E. mundus, and E. pergandiella, and, (4) B. argentifolii, E. mundus, E. formosa, and E. pergandiella. Arrays of hosts (24) were constructed in Petri dishes using leaf disks, each bearing one host. Thirty arrays of each host combination were exposed to single females for 6 h. All hosts were dissected to determine number of eggs per host. Encarsia pergandiella parasitized E. formosa hosts as frequently as E. mundus hosts. However, E. pergandiella parasitized either of these heterospecific hosts more frequently than conspecific hosts in treatments including two secondary host species. When a third parasitoid species was included in host arrays, E. pergandiella parasitized conspecific hosts as frequently as heterospecific hosts. Developmental stage of the hosts did not significantly influence host species selection by E. pergandiella. Our results indicate that host selection and oviposition by heteronomous hyperparasitoids like E. pergandiella, vary with the composition of hosts available for parasitization, and suggest a preference for heterospecific over conspecific secondary hosts.  相似文献   

2.
Summary Larvae of the aspen blotch miner, Phyllonorycter salicifoliella Chambers (Lepidoptera: Gracillariidae), feed within leaves of three host-tree species in north-central Minnesota, USA. Far more individuals occur on Populus tremuloides than on P. balsamifera or P. grandidentata. We tested whether this pattern of host use reflected variable performance among alternative hosts by examining survivorship, sources of mortality, pupal mass, feeding efficiency, and development time of miners on each tree species. We also determined foliar water, nitrogen, condensed tannin, and phenolic glycoside content of host trees to test if host-tree chemical attributes were responsible for differences in performance. There was no significant difference in egg-to-adult survival among miners on different hosts, although dominant sources of mortality did vary. Miners on P. grandidentata suffered less parasitism and more predation than those on the other hosts, even though most parasitoid species attacked miners on all hosts. The other performance parameters varied among host species, but not in a consistent pattern. Pupal mass was greatest on P. tremuloides and P. balsamifera, the hosts with comparatively high foliar nitrogen and low phenolic glycoside concentrations. However, feeding efficiency was greatest and development time shortest for miners on P. grandidentata. Thus, pupal mass was the only index of performance maximized on P. tremuloides, the most commonly used host. Infrequent occurrence of Phyllonorycter salicifoliella on P. grandidentata results in part from phenological differences between this and the other host species. Low oviposition rates on P. balsamifera are correlated with low abundance of this host at the study site and a phenolic glycoside profile different from that of the other host species.  相似文献   

3.
Fopius arisanus (Sonan) and Diachasmimorpha tryoni (Cameron) are two important solitary endoparasitoids of tephritid fruit flies. The former species attacks host eggs while the latter attacks host larvae, and both species emerge as adults from the host puparium. This study investigated intrinsic competition between these two parasitoids, as well as aspects of intraspecific competition within each species in the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Parasitization by F. arisanus resulted in direct mortality of host eggs and prolonged development of host eggs and larvae. Superparasitism by F. arisanus was uncommon when mean parasitism per host patch was <50%, but increased with rising rates of parasitism. Superparasitism by D. tryoni was more common. In superparasitized hosts, supernumerary individuals of F. arisanus were killed through physiological suppression, while supernumerary larvae of D. tryoni were killed mainly through physical attack. In multiparasitized hosts, dissections showed that 81.6% of D. tryoni eggs in the presence of F. arisanus larvae died within 3 days, indicating physiological inhibition of egg hatch. Rearing results further showed that F. arisanus won almost all competitions against D. tryoni. The ratio of D. tryoni stings to ovipositions was lower in hosts not previously parasitized by F. arisanus than in parasitized hosts, suggesting that D. tryoni can discriminate against parasitized hosts. The mechanism that F. arisanus employs to eliminate D. tryoni is similar to that it uses against all other larval fruit fly parasitoids so far reported. The results are discussed in relation to the competitive superiority of early acting species in fruit fly parasitoids, and to a possible competitive-mediated mechanism underlying host shift by D. tryoni to attack non-target flies following the successful introduction of F. arisanus in Hawaii.  相似文献   

4.
The solitary parasitoids Aphidius erviHaliday (Hymenoptera: Aphidiidae) and Aphelinus asychisWalker (Hymenoptera: Aphelinidae) attacked but generally did not oviposit in pea aphids parasitized by the other species. Wasps selectively oviposited in unparasitized hosts when given a choice. Host discrimination depended on the recognition of internal cues. Females of A. asychiseither could not recognize or ignored A. ervi'sexternal host marking pheromone. Under most conditions, A. ervisurvived in superparasitized hosts, killing competing A. asychislarvae by physical attack and possibly physiological suppression. The outcome of larval competition was not affected by oviposition sequence or age difference between larvae; A. asychissurvived only when it had substantially completed larval development before the host was superparasitized by A. ervi.It is suggested that competition for host resources incurs a cost, for the winner in terms of reduced size or increased development time and for the loser in terms of lost progeny and searching time. Consequently, heterospecific host discrimination can be functional. Internal, and probably general, cues enable wasps to recognize and avoid oviposition in hosts already parasitized by an unrelated species.  相似文献   

5.
Two univoltine leafroller species,Archips argyrospila Walker andArchips rosana L., were reared from eclosion to adulthood on known or potential host plants. Both species were able to complete development on eight of the ten plants tested, the exceptions being apricot and peach. Rates of development differed among hosts, and indicated a range of host suitability. Differences in female pupal weights were apparent following the different rearing treatments, but these did not correlate with subsequent female fecundity. When development was compared between the two leafroller species,A. rosana had higher survivorship, more rapid development and higher female fecundity than didA. argyrospila, regardless of host. These findings indicate thatA. rosana may successfully exploit a wider host range than doesA. argyrospila. Comparisons of survivorship and developmental rates among hosts for each species of leafroller suggest that both species may have the potential for host-range expansion.  相似文献   

6.
Phymastichus coffea (LaSalle) (Hymenoptera: Eulophidae) is an African endoparasitoid of the coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) that has been introduced to several countries to control this important pest. In the present study we performed a series of laboratory experiments in order to determine if there was evidence of host discrimination and superparasitism in P. coffea. Our choice experiments demonstrate that P. coffea females showed significant preference to attack unparasitized hosts, rather than those parasitized conspecifically. No significant preferences were detected in self-specific attacks between parasitized hosts and the healthy ones. A further dissection of hosts sequentially attacked either self or conspecifically, revealed that there were no more than two eggs per host. As P. coffea is a species that normally allocates two eggs per host in a single attack, we assumed that females were able to attack already parasitized hosts, but they did not lay eggs in them. Based on this fact, we conclude that there is a host discrimination ability in P. coffea females. With respect to the superparasitism by P. coffea using non-choice experiments, there was no significant difference between self-specific or conspecific attacks with respect to the control after one or two successive attacks. Conspecific attacks yielded the largest numbers of eggs after 3rd, 4th and 5th attacks and significant differences were found between this treatment and the control. The maximum number of eggs found in a single host was six individuals (conspecific treatment). These results confirmed that P. coffea usually laid two eggs per host; however, when there are no hosts available, conspecific attacks can result in the superparasitism in this species.  相似文献   

7.
Recent population dynamic theory predicts that disruption of biological control may occur when one parasitoid species' superiority in intrinsic competition is associated with a lower ability to find and exploit hosts (i.e., ability in extrinsic competition). One might expect such a trade-off, for instance, if parasitoids with larger (and fewer) eggs are more likely to prevail in intrinsic competition than species with smaller (and more numerous) eggs. We tested the idea that relative egg size could be used to predict the outcome of intrinsic competition in two closely related endoparasitoids, Encarsia pergandiella Howard and Encarsia formosa Gahan. Contrary to expectation, the parasitoid species with smaller eggs, E. pergandiella, prevailed in intrinsic competition, regardless of the order that hosts were exposed to the two species. In a literature survey, we found four studies of competing pairs of endoparasitoid species for which: (a) egg size estimates were available and (b) one species was consistently superior in intrinsic competition. In three of the four studies, the small-egged species prevailed in intrinsic competition, as we also found. Although E. formosa lost in intrinsic competition, this species negatively affected E. pergandiella's progeny production by host feeding on and killing hosts containing E. pergandiella eggs. E. formosa females also host fed on conspecific-parasitized hosts. As a mechanism of both intra- and interspecific interference competition, host feeding on parasitized hosts contradicts assumptions about the nature of interference competition in existing population dynamics models.  相似文献   

8.
Seasonal changes in the infestation and dispersion patterns of egg predatory nemerteans on their crab hosts were analyzed. Marked differences in the seasonal patterns of infestation were noted between worm species, yet, common patterns in the aggregation of the worms were found. Worm aggregation increased at the onset of the reproductive seasons of the hosts, and at the nadirs of the reproductive seasons for those hosts with year round breeding. The aggregation patterns of two worm species fluctuated with the physical environment of their estuarine hosts. Salinity changes as a result of seasonal rains may have caused changes in the underlying dispersion patterns of Carcinonemertes epialti on Hemiarapsus oregonensis, and C. mitsukurii on Portunus pelagicus. Lastly, the embryogenic cycle of the host species was significant in shaping the infestation and aggregation patterns of C. epialti on Cancer anthonyi and C. regicides on Paralithodes camtschaticus. Worm immigration and emigration were linked to crab embryogenesis and directly influenced the dispersion patterns of the worms.  相似文献   

9.
The abilities ofMyiopharus doryphorae (Riley) andM. aberrans (Townsend) (Diptera: Tachinidae) to discriminate between parasitized and non-parasitized Colorado potato beetle (host)Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) larvae, were investigated under laboratory and field conditions. Laboratory experiments showed that bothMyiopharus species have a significantly greater frequency for larvipositing in non-parasitized hosts over parasitized ones. Direct field observations of larvipositional behavior of bothMyiopharus species over three growing seasons showed effective restraint from larviposition into parasitized hosts, while larviposition into nonparasitized ones occurred readily. Avoidance of previously-parasitized hosts occurred after the larvipositing flies briefly landed on host larvae without attempting to insert the larvipositor. The low levels of superparasitism which occurred in the caged experiments and in the field appeared to be due to a breakdown of the larvipositing parasitoids' restraint when they met only parasitized hosts or when many parasitoids competed for reduced numbers of hosts late in the season.  相似文献   

10.
Females of the larval parasitoidCotesia glomerata (L.) use plant-associated cues to locate their lepidopteran host,Pieris rapae L. In this study we investigated the influence of four host plant species,Brassica oleracea var.acephala (‘Vates’ kale),Tropaeolum majus (nasturtium),Lunaria annua (honesty), andCleome spinosa (spider flower), on two components of the host selection process inC. glomerata, namely, attraction and host acceptance. Choice tests in a flight tunnel showed that parasitoids were attracted to some host plant species more than to others in the absence of host larvae.B. oleracea was the most attractive plant species, followed byL. annua, T. majus, andC. spinosa. In previous studies it was shown thatB. oleracea carries highly suitable hosts forC. glomerata and that, in the field, parasitization rates on this plant were the highest. When host larvae were reared on the four host plant species and then transferred to a common substrate (B. oleracea var.capitata, cabbage), plant species that had served as diet for the hosts did not have a significant effect on acceptance for parasitization. Thus, parasitoids were attracted to host plant species differentially, but they did not discriminate among host larvae based on the dietary history of their hosts. ForC. glomerata, it appears that phytochemistry mediates host selection more by influencing parasitoid attraction than it does by affecting host acceptance.  相似文献   

11.
Introduced exotic species have the potential to spread their associated parasites to native species which can be catastrophic if these hosts are immunologically naïve to the novel parasite. The guppy (Poecilia reticulata) has been disseminated worldwide outside of its native habitat and therefore could be an important source of infection to native fish species. Its parasite fauna is dominated by the ectoparasitic monogeneans, Gyrodactylus turnbulli and Gyrodactylus bullatarudis. The current study tested the host specificity of G. bullatarudis by experimentally infecting a range of isolated fish hosts, including temperate species. Surprisingly, the parasite was capable of establishing and reproducing, for several days, on the three-spined stickleback when transferred directly to this host. We also established that G. bullatarudis could be transmitted under aquarium conditions at both 25 °C and 15 °C. At the higher temperature, the parasite was even capable of reproducing on this atypical host. The implications of these findings are discussed in terms of host specificity, host switching and climate change.  相似文献   

12.
Arjen Biere  Sonja Honders 《Oecologia》1996,107(3):307-320
It is often assumed that host specialization is promoted by trade-offs in the performance of parasites on different host species, but experimental evidence for such trade-offs is scant. We studied differences in performance among strains of the anther smut fungus Ustilago violacea from two closely related host plant species, Silene alba and S. dioica, on progeny of (1) the host species from which they originated, (2) the alternative host species, and (3) inter-specific hybrids. Significant intra-specific variation in the pathogen was found for both infection success on a range of host genotypes (virulence) and components of spore production per infected host (aggressiveness) (sensu Burdon 1987). Strains did not have overall higher virulence on conspecifics of their host of origin than on strains from the heterospecific host, but they did have a significantly (c. 3 times) higher spore production per infected male host. This finding suggests that host adaptation may have evolved with respect to aggressiveness rather than virulence. The higher aggressiveness of strains on conspecifics of their host of origin resulted both from higher spore production per infected flower (spores are produced in the anthers), and greater ability to stimulate flower production on infected hosts. The latter indicates the presence of adaptive intraspecific variation in the ability of host manipulation. As transmission of the fungus is mediated by insects that are both pollinators of the host and vectors of the disease, we also assessed the effect of strains on host floral traits. Infection resulted in a reduction of inflorescence height, flower size, and nectar production per flower. Strains did not differ in their effect on nectar production, but infection with strains from S. alba resulted in a stronger reduction of inflorescence height and petal size on both host species. Vectors may therefore in principle discriminate among hosts infected by different strains and affect their efficiency of transmission. Contrary to assumptions of recent hypotheses about the role of host hybrids in the evolution of parasites, hybrids were not generally more susceptible than parental hosts. It is therefore unlikely that the rate of evolution of the pathogen on the parental species is slowed down by selection for specialization on the hybrids.  相似文献   

13.
Extensive study of insect immune systems has yielded abetter understanding of the mechanisms used by insects to defendagainst invaders. This knowledge can be used to predict hownatural enemies utilize potential hosts, which will aid in theplanning of biological control programs. Our experimental systemconsists of novel host-parasitoid associations, with two NewWorld pyralid stalk borers, Diatraea saccharalis and D.grandiosella; one Old World crambid borer, Ostrinia nubilalis;and three Old World microgastrine braconid parasitoids, Cotesiachilonis, C. sesamiae, and C. flavipes. Experiments on hostsuitability indicate that parasitoids that are taxonomically,behaviorally and ecologically very similar may differ in theirability to utilize a host of the same species. Likewise,utilization of related hosts can produce different outcomes for agiven parasitoid species. D. saccharalis is a suitable host forall three parasitoid species, whereas D. grandiosella oftenencapsulates C. sesamiae and C. flavipes. O. nubilalis is anunsuitable host for all three species. Different species ofparasitoids may use different factors at different times afterparasitization to counter the host's immune response. This studysuggests that the physiological host range of these parasitoids willbe narrow, thus limiting effects on non-target species. However,the lack of consistent patterns also shows that explicit testingwill be needed to determine host ranges.  相似文献   

14.
Three species of umagillid turbellarians were found to have different nutritional relationships with their echinoid hosts: Syndisyrinx franciscanus ingests host intestinal tissue and ciliates that are symbiotic in the intestine of the host; Syndesmis dendrastrorum consumes intestinal tissue and materials that have been ingested by the host; an umagillid that closely resembles Syndesmis echinorum subsists entirely on host intestinal tissue.  相似文献   

15.
Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.  相似文献   

16.
Oviposition behaviour and host size selection of the solitary parasitoid Leptomastix epona(Walker) and the gregarious Pseudaphycus flavidulus(Brèthes) [both Hymenoptera: Encyrtidae] were examined on five size classes of the mealybug Pseudococcus viburni(Signoret) [Hemiptera: Pseudococcidae]. The host size classes mostly consisted of one stage (first, second, third instar nymph, young adult and preovipositing adult) and were presented together to wasps of either parasitoid species. Both parasitoid species locate the host by drumming the surface of the patch with the antennae. Leptomastix eponaseems to use mainly the antennae to examine the host but P. flavidulusmay accept or reject a host for oviposition after antennation or insertion of the ovipositor. Leptomastix eponaattempts oviposition in all the host stages from second instar nymphs but P. flavidulusincludes first instar. Both parasitoid species select mainly larger hosts (>1 mm, third instar nymphs) to oviposit but P. flavidulusis able to parasitize more second instar nymphs compared to L. epona. Female wasps of L. eponamay host feed on small mealybugs (second and third instar nymphs) that they do not use for oviposition. Oviposition experience of either parasitoid species for 24 hours does not influence host size selection on patches with hosts of similar mixed sizes. Oviposition decisions are independent of the host sizes of the preceding ovipositions. Implications about stability of a single parasitoid – host system and the success of biological control of the mealybug were discussed in respect of the developmental refugia of the two parasitoid species. Niche overlap of the two parasitoid species was discussed with a view to giving an insight into a single or multiple introduction.  相似文献   

17.
The host specificity of insect parasitoids and herbivores is thought to be shaped by a suite of traits that mediate host acceptance and host suitability. We conducted laboratory experiments to identify mechanisms shaping the host specificity of the aphid parasitoid Binodoxys communis. Twenty species of aphids were exposed to B. communis females in microcosms, and detailed observations and rearing studies of 15 of these species were done to determine whether patterns of host use resulted from variation in factors such as host acceptance or variation in host suitability. Six species of aphids exposed to B. communis showed no signs of parasitism. Four of these species were not recognized as hosts and two effectively defended themselves from attack by B. communis. Other aphid species into which parasitoids laid eggs had low suitability as hosts. Parasitoid mortality occurred in the egg or early larval stages for some of these hosts but for others it occurred in late larval stages. Two hypotheses explaining low suitability were investigated in separate experiments: the presence of endosymbiotic bacteria conferring resistance to parasitoids, and aphids feeding on toxic plants. An association between resistance and endosymbiont infection was found in one species (Aphis craccivora), and evidence for the toxic plant hypothesis was found for the milkweed aphids Aphis asclepiadis and Aphis nerii. This research highlights the multifaceted nature of factors determining host specificity in parasitoids.  相似文献   

18.
In this study we tested for trade-offs between the benefit arbuscular mycorrhizal (AM) fungi provide for hosts and their competitive ability in host roots, and whether this potential trade-off shifts in the presence of a plant stress (herbivory). We used three species of AM fungi previously determined to vary in host growth promotion and spore production in association with host plants. We found that these AM fungal species competed for root space, and the best competitor, Scutellospora calospora, was the worst mutualist. In addition, the worst competitor, Glomus white, was the best mutualist. Competition proved to have stronger effects on fungal infection patterns than herbivory, and competitive dominance was not altered by herbivory. We found a similar pattern in a previous test of competition among AM fungi, and we discuss the implications of these results for the persistence of the mutualism and feedbacks between AM fungi and their plant hosts.  相似文献   

19.
Intraspecific host discrimination is frequently found in solitary parasitoids, but interspecific host discrimination, where female parasitoids recognize hosts already parasitized by females of other species, is rare. This particular behaviour appears to be adaptive only under specific circumstances. In this paper, we quantified intraspecific host discrimination in Anaphes n. sp. (Hymenoptera: Mymaridae), an endoparasitoid of the eggs of Listronotus oregonensis (LeConte) (Coleoptera: Curculionidae) and interspecific host discrimination toward eggs parasitized by Anaphes sordidatus (Girault), a sympatric species competing for the same resource in similar habitats. To examine host discrimination, choice experiments were used where the females had to choose between different categories of eggs (unparasitized, parasitized by Anaphes n. sp. or A. sordidatus). Superparasitism and multiparasitism were avoided in experiments where the female had a choice between unparasitized hosts and hosts parasitized by the same female, by a conspecific or by a female A. sordidatus. When all hosts available were parasitized, conspecific superparasitism occurred more often than self-superparasitism or multiparasitism. These results indicated that females Anaphes n. sp. were capable of self-, conspecific and interspecific discrimination. Self-discrimination followed recognition of an external marking while interspecific discrimination occurred mostly after insertion of the ovipositor. Interspecific discrimination could result from the recent speciation of these species and could be associated with a genotypic discrimination. This behavior appears to be adaptive because of the competition for common hosts between the two parasitoid species.  相似文献   

20.
The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4-day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae-larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号