首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Developmental changes in dopamine modulation of the heart were examined in the isopod crustacean Ligia exotica. The Ligia cardiac pacemaker is transferred from the myocardium to the cardiac ganglion during juvenile development and the heartbeat changes from myogenic to neurogenic. In the myogenic heart of early juveniles, dopamine affected the myocardium and caused a decrease in the frequency and an increase in the duration of the myocardial action potential, resulting in negative chronotropic (decrease in beat frequency) and positive inotropic (increase in contractile force) effects on the heart. Contrastingly, in the heart of immature adults just after juvenile development, dopamine caused effects of adult type, positive chronotropic and positive inotropic effects on the heart affecting the cardiac ganglion and myocardium. During the middle and late juvenile stages, dopamine caused individually a negative or a positive chronotropic effect on the heart. These results suggest that the chronotropic effect of dopamine on the Ligia heart is reversed from negative to positive in association with the cardiac pacemaker transfer from the myocardium to the cardiac ganglion during juvenile development.  相似文献   

2.
The aim of this study was to asses the direct effect of ET-1 on spontaneous discharge rate of the pacemaker tissue in the presence of isoproterenol. The experiments were performed on pacemaker tissue of the isolated right auricle of the right heart atrium of a two-day-old rat. The spontaneous discharge rate of the pacemaker tissue was recorded on the ECG apparatus and analyzed by the computer. ET-1 alone did not significantly affect the discharge rate of the pacemaker tissue. Isoproterenol rapidly increased the discharge rate of the pacemaker tissue. ET-1 had negative chronotropic effect in the presence of isoproterenol. JKC-301, a blocker of ET(A) receptors, significantly reduced the negative chronotropic effect of ET-1 in the presence of isoproterenol, whereas IRL-1038, a blocker of ET(B) receptors, did not significantly affect the negative chronotropic effect of ET-1 in the presence of isoproterenol. In conlusion, the negative chronotropic effect of ET-1 in the presence of beta-adrenergic stimulation the pacemaker tissue of the right auricle of the right heart atrium of the two-day-old rat is mediated by ET(A) receptors.  相似文献   

3.
Experiments on 51 isolated rabbit hearts have documented, that delta sleep-inducing peptide (6 X 10(-6) M/l) has a modulating effect on the mediators influencing the heart. This peptide enhances negative chronotropic effect of acetylcholine (1 X 10(-6) M/l) and decreases positive chronotropic effect of noradrenaline (1 X 10(-6) M/l). Such effect may be one of mechanisms of changes in the extracardiac regulation on the heart influenced by this peptide.  相似文献   

4.
Changes in the positive chronotropic effects induced by epicardial irrigation with heated Krebs-Henseleit solution were studied in the isolated rabbit heart before and after intracoronary infusion of a ganglionic blocking agent, Arfonad (10 mg/ml). 2-3 minutes after Arfonad infusion the positive chronotropic effects decreased to 37.9% and 5-10 minutes later they returned to control levels. It is concluded that epicardial surface warming causes an increase in afferent receptor activity. It is suggested that neurogenic component of the positive chronotropic effect may be produced through the activation of intracardiac reflectory pathways.  相似文献   

5.
We used Daphnia magna bioassays to determine the LC(50) and the effects on the heart of the cardioactive drugs ouabain, verapamil, metaproterenol and metoprolol. Distinctions were made between the pharmacological and toxicological effects of these drugs and the adequacy of physicochemical characteristics of its habitat (reconstituted water). Video microscopy and digital image processing were used to study the pharmacological effects on the heart. D. magna exhibited the expected sensitivity to the reference toxicant sodium dodecyl sulfate with a LC(50) of 15.6+/-4.5 mg/l. All drugs were toxic with 48 h-LC(50) of 2.03 mg/l ouabain, 7.04 mg/l verapamil, 32.45 mg/l metaproterenol and 76.21 mg/l metoprolol. Ouabain was the most toxic and caused a positive concentration-dependent inotropic effect. Verapamil caused positive chronotropic and inotropic effects, while metaproterenol showed positive concentration-dependent chronotropic effects at high concentrations (10(-3) and 10(-4) M). Metoprolol induced a positive chronotropic effect at low concentrations (10(-8), 10(-7), 10(-6) M) and a negative chronotropic effect at high concentration (10(-4) M). Ouabain, metaproterenol and metoprolol in D. magna caused similar effects to those produced in mammals. In contrast, verapamil caused opposite effects. The results suggest the presence of Na(+), K(+)-ATPase receptors to verapamil and of non-specific adrenergic receptors in heart of D. magna.  相似文献   

6.
The inotropic and chronotropic actions of prostaglandin (PG) types PGE1, PGA1, and PGF were studied in isolated guinea pig right and left atria, and papillary muscles; rabbit atria; and toad ventricular strips in order to more completely define the cardiac contractile properties of PG. All three prostaglandins, in muscle bath concentrations of 10μg/ml, exerted positive inotropic and chronotropic actions on guinea pig atrium. These contractile effects were persistent after removal of PG from the muscle bath and appeared to limit the relative response to a subsequent dose of PG. The inotropic action of PGE1 was present over a wide range of bath calcium concentrations (1.1 to 4.4 mM/L). Beta adrenergic receptor blockade, histamine blockade, and pretreatment with reserpine failed to significantly affect the inotropic actions of PG. Norepinephrine and histamine produced more potent inotropic and chronotropic effects on guinea pig atria than did PG and these contractile effects did not exhibit persistence or tachyphylaxis. The prostaglandins did not significantly affect dose response curves for norepinephrine inotropic and chronotropic actions. The prostaglandins had no effect on the force or frequency of contraction in rabbit atria. PGE1 exerted a positive inotropic effect on toad ventricular myocardium whereas PGA1 had no effect and PGF had a negative inotropic action.  相似文献   

7.
The effects of C-type natriuretic peptide (CNP) on heart rate and ionic currents were demonstrated by recording the ECG from adult mice and performing voltage-clamp experiments on single sinoatrial (SA) node cells isolated from mouse heart. The selective natriuretic peptide type C receptor (NPR-C) agonist cANF (10(-7) M) significantly decreased heart rate in the presence of isoproterenol (5 x 10(-9) M), as indicated by an increase in the R-R interval of ECGs obtained from Langendorff-perfused hearts. Voltage-clamp measurements in enzymatically isolated single pacemaker myocytes revealed that CNP (10(-8) M) and cANF (10(-8) M) significantly inhibited L-type Ca2+ current [ICa(L)]. These findings suggest that the CNP effect on this current is mediated by NPR-C. Further support for an NPR-C-mediated inhibition of ICa(L) in SA node myocytes was obtained by altering the functional coupling between the G protein Gi and NPR-C. In these experiments, a "Gi-activator peptide," which consists of a 17-amino acid segment of NPR-C containing a specific Gi protein-activator sequence, was dialyzed into SA node myocytes. This peptide decreased ICa(L) significantly, suggesting that NPR-C activation can result in a reduction in ICa(L) when CNP is bound and the Gi protein pathway is activated. This effect of CNP appears to be selective for ICa(L), because the hyperpolarization-activated current was unaffected by CNP or cANF. These results provide the first demonstration that CNP has a negative chronotropic effect on heart rate and suggest that this effect is mediated by selectively activating NPR-C and reducing ICa(L) through coupling to Gi protein.  相似文献   

8.
9.
The effect of human adrenomedullin, human amylin fragment 8-37 (amylin 8-37) and rat calcitonin gene-related peptide (CGRP) on contractile force, heart rate and coronary perfusion pressure has been investigated in the isolated perfused rat hearts. Adrenomedullin (2x10(-10), 2x10(-9) and 2x10(-8) M) produced a significant decrease in contractile force and perfusion pressure, but only the peptide caused a decline in heart rate at the highest dose. Amylin (10(-9), 10(-8) and 10(-7) M) significantly increased and then decreased contractile force. Two doses of amylin (10(-8) and 10(-7) M) induced a significant increase in heart rate, however amylin did not change perfusion pressure in all the doses used. Rat alpha CGRP (10(-8), 10(-7) and 10(-6) M) evoked a slight decline in contractile force following a significant increase in contractile force induced by the peptide. CGRP in all the doses raised heart rate and lowered perfusion pressure. Our results suggest that adrenomedullin has negative inotropic, negative chronotropic and coronary vasodilator actions. Amylin produces a biphasic inotropic effect and evokes a positive chronotropy. CGRP causes positive inotropic, positive chronotropic and vasodilatory effects in isolated rat hearts.  相似文献   

10.
In experiments on adult albino rats the authors used the substances BW 284 C51 (1.5-bis(allyldimethylammoniumphenyl)-pentane-3-one-dibromide) as a specific inhibitor of acetylcholinesterase (AChE) and ethopropazine (10-(2-diethylaminopropyl) phenothiazine hydrochloride) as a specific inhibitor of butyrylcholinesterase (BuChE) to determine the two enzyme activities in atrial homogenates and to investigate changes after AChE or BuChE inhibition of the negative chronotropic effect of acetylcholine (ACh) on atria incubated in vitro. AChE accounted for only 12% and BuChE for 88% of the total ability of atrial homogenates to hydrolyse acetylcholine. The concentration of exogenous ACh needed to reduce the spontaneous frequency of contractions of the isolated right atrium by 30, 60, or 90/min fell by 78%, 79% and 84% respectively after BW 284 C51 inhibition of AChE and by 95%, 94% and 94% after simultaneous inhibition of AChE and BuChE. The significance of AChE in control of the negative chronotropic effect of ACh is thus evidently significantly greater than would correspond to the percentual proportion of AChE in cholinesterase activities in the atria of the rat heart. In can be assumed that AChE is functionally associated with parasympathetic innervation of the heart and that it is probably present in a high concentration in the primary pacemaker region.  相似文献   

11.
In the adult heart of the isopod crustacean Ligia exotica, the cardiac ganglion acts as the primary pacemaker with the myocardium having a latent pacemaker property. We show several lines of evidence that dopamine modulates the heartbeat of adult L. exotica affecting both pacemaker sites in the heart. Dopamine caused positive chronotropic (frequency increase) and inotropic (amplitude increase) effects on the heartbeat in a concentration dependent manner. The time courses of these effects were considerably different and the inotropic effect appeared later and lasted longer than the chronotropic effect. Dopamine rapidly increased the frequency of the bursting activity in the cardiac ganglion neurons and each impulse burst of the cardiac ganglion was always followed by a heartbeat. Moreover, dopamine slowly increased the amplitude and duration of the action potential plateau (plateau potential) of the myocardium. When the myocardial pacemaker activity was induced by application of tetrodotoxin, which suppresses cardiac ganglion activity, dopamine slowly increased the amplitude and duration of the myocardial plateau potential while decreasing its frequency. These results suggest that dopamine modulates the heartbeat in adult L. exotica producing a dual effect on the two pacemaker sites in the heart, the cardiac ganglion and myocardium.  相似文献   

12.
Summary The chronotropic and inotropic effects of four atrial peptides (cardiodilatin 1–16, atrial natriuretic factor 8–33 and atriopeptin I and III) on the isolated systemic heart ofOctopus vulgaris were studied.Using a preparation that produces a physiological stroke volume at physiological input pressures, it was found that ANF, atriopeptin I and atriopeptin III exerted both negative chronotropic and inotropic effects. In contrast, cardiodilatin produced a positive inotropic effect.A dose-response curve of ANF is reported, showing a threshold concentration of about 10–12 M.The pharmacological and physiological implications of these results are discussed in relation to some characteristics of the cephalopod systemic heart.  相似文献   

13.
Stimulation of the vagus nerve with a volley of electric impulses changed the action of grass-snake heart producing a negative chronotropic and inotropic effect. The effect of vagal stimulation was not different from the effect of acetylcholine administration and it was absent in the presence of atropine and hexamethonium. It was not possible to demonstrate sympathetic nervous fibres in the stimulated segment of the vagus nerve and trials of finding a separate nerve increasing the heart rate were unsuccessful. Parasympathicotonic agents caused bradycardia and a fall in the amplitude of cardiac contractions, and in sufficiently high doses they arrested the heart in diastole. The action of muscarine-like agents was stronger than that of nicotine, and the anticholinergic action of tubocurarine was weaker than that of atropine. Catecholamines exerted a positive inotropic and chronotropic effect which was completely blocked by propranolol in some tests only.  相似文献   

14.
张朝  孙光启 《生理学报》1996,48(3):235-242
用细胞内微电极技术研究了ATP-敏感性钾(K_(ATP))通道和内皮素(endothelin,ET)在缺氧所致窦房结起搏细胞负性频率中的作用,主要结果如下:(1)缺氧引起窦房结起搏细胞的RPF降低和APD缩短,这一效应随时间延长而加重。(2)K_(ATP)通道开放剂cromakalim浓度依赖性地对窦房结起搏细胞有负性频率作用,且明显缩短APD_(50)。该通道的阻断剂格列苯脲能部分阻断缺氧对起搏细胞的上述效应,表明缺氧效应中有K_(ATP)通道的参与。(3)ET-1可显著加重缺氧所致的RPF降低,使起搏细胞停跳时间前移;而以ET_A受体阻断剂BQ-123预处理窦房结标本后,则能有效地缓解缺氧对起搏细胞的效应,提示内源性ET-1的释放在缺氧效应中的作用。上述结果表明,缺氧所致起搏细胞的负性频率作用和APD缩短,与K_(ATP)通道的激活和内源性ET-1的释放有关。  相似文献   

15.
Clonidine was administered to isolated guinea pig right atria in order to characterize its chronotropic activity and its interaction with other chronotropic agents at the postjunctional level. Clonidine either had no significant effect (10(-7)--10(-4) M) or decreased (10(-3) M) atrial rate. Pretreatment of the atria with clonidine noncompetitively antagonized (10(-6)--10(-4) M) the positive chronotropic actions of isoproterenol, and competitively antagonized (10(-4) M) the negative chronotropic actions of pilocarpine. At doses of 10(-6) or 3 X 10(-6) M, clonidine also noncompetitively antagonized the positive chronotropic effects of 4-methylhistamine and glucagon. The results show that clonidine antagonizes both adrenergic and cholinergic influences on atrial rate at the postjunctional level and suggest that the antagonism of adrenergic influences does not involve a direct interaction with beta-adrenergic receptors.  相似文献   

16.
Patients suffering from chronotropic incompetence are generally treated with a rate-responsive pacemaker that stimulates the heart at a rate derived from a strain related sensor signal. The pacemaker concept described here uses a well-defined time interval in the electrogram as sensor parameter (AVCT: atrio-ventricular conduction time). AVCT is directly controlled by the autonomic nervous system. The design of the new algorithm was based on a thorough experimental analysis of AVCT subject to variations of the exercise rate and the pacing frequency. There it was demonstrated that AVCT is disturbed by the respiratory activity. The new rate-responsive algorithm which uses the internal model control principle explicitly takes into account the closed-loop nature of the underlying system. The major design objectives were: a) extended range of the individual heart rate, b) effective attenuation of the respiratory related disturbance and c) dynamic stability. Seven patients undergoing an incremental exercise test were paced with the new AVCT-based algorithm. When paced with this algorithm the paced heart rate was 126 +/- 12 min(-1) whereas the peak intrinsic heart rate was only 100 +/- 20 min(-1). The increase which was significant (26 +/- 13 min(-1); 15.53 min(-1)) clearly demonstrated the potential of this concept to restore chronotropic competence. A reanalysis of the experiments was undertaken in order to facilitate the individual parameterization in clinical practice. It could be demonstrated that a rather simple screening test is sufficient to gain the knowledge necessary for the individual parameterisation.  相似文献   

17.
1. The chronotropic effect of norepinephrine was studied in isolated spontaneously beating atrial preparations of carp (Cyprinus carpio) heart. 2. Norepinephrine, 0.1 microM, caused a positive chronotropic effect, while at 1 microM it caused either a positive or a negative chronotropic effect. The positive chronotropic effect, observed in 13 preparations, was potentiated by phentolamine and almost completely blocked by propranolol. 3. The negative chronotropic effect observed in the other 5 preparations was greater in the presence of propranolol, reduced by phentolamine and not affected by atropine. 4. These results indicate that alpha- and beta-adrenoceptors may coexist, mediating the negative and positive chronotropic effects, respectively, in isolated atrial preparations of carp heart.  相似文献   

18.
Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.  相似文献   

19.
Spontaneously and rhythmically beating single cells from the ventricles of new-born rats were cultured on coverslips for 3 to 4 days and transferred to a small perfusion chamber for photoelectric recording of their contractions. The cells responded to 3 - 10(-7) M adrenaline with a pronounced increase and to 1.7 - 10(-5) M carbamylcholine with a mode-rate decrease in the rate of beat. Carbamylcholine nearly abolished the beat-accelerating effect of adrenaline. 8-Bromo cyclic GMP and N2-2'-O-'DIBUTYRYL CYCLIC GMP, in concentrations of 4.2 to 8.4 - 10(-4) M, exerted only very slight depressant effects on the basal rate of beat, but strongly antagonized, and in the majority of experiments with 8-bromo cyclic GMP completely suppressed, the positive chronotropic action of adrenaline. Cyclic GMP, 5'-GMP, and 5'-guanylylimidodiphosphate were without effect. 8-Bromo cyclic AMP caused a marked acceleration of beating. In view of the mediator roles that cyclic AMP and cyclic GMP have been assigned in the cardiac actions of beta-adrenergic and of cholinergic agents, respectively, the present results may be interpreted as being indicative of an adrenergic-cholinergic antagonism at the level of these two cyclic nucleotides.  相似文献   

20.
Isolated perfused rat hearts were used to compare the effects of the synthetic neuropeptide Y (NPY) and 4-norleucine-NPY on cardiac function. Each peptide exhibited both negative inotropic and chronotropic effects, and also caused coronary vasoconstriction leading to a reduction in coronary flow. A comparison of the IC50 values from dose-response curves using 10(-14) to 10(-7) M peptides (IC50 is the peptide concentration that produced a 50% decrease of the maximal effect) indicated that NPY was more potent as inhibitor of contractility and less potently inhibited coronary flow and heart rate, whereas 4-norleucine-NPY had more inhibitory influence on coronary flow and heart rate and less on cardiac contractility. This difference in potencies suggests that the inhibitory effects of NPY on contractility, coronary flow and heart rate may be independent of each other. Since NPY also decreased the contractile force of isolated left atrial and right ventricular strips of the rat heart, the coronary flow decrease cannot be the cause of the negative inotropy of isolated heart. Pretreatment of atrial and ventricular strips with NPY did not influence the positive inotropic effect produced by the cardiac glycoside ouabain indicating that sarcolemmal Na+, K+-ATPase was not involved in the inhibitory inotropic effect of NPY. Further studies towards elucidating the mechanism of the negative inotropy of cardiac muscles using isolated heart mitochondria revealed that NPY uncoupled oxidative phosphorylation and blocked mitochondrial calcium uptake; the former event fosters negative inotropy. Since these effects on mitochondria occurred at concentrations 100-fold higher than those required for negative inotropy, the two effects of NPY may not be related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号