首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns.  相似文献   

2.
Shrubs are often considered competitive barriers for seedlings planted in reforestation programs, although they can facilitate tree recruitment, especially in ecosystems under high abiotic stress. An alternative reforestation technique using pioneer shrubs as nurse‐plants for Olea europaea ssp. cuspidata was tested in exclosures in northern Ethiopia. Seedlings were planted in three different microhabitats, and their survival was monitored. The microhabitats were bare soil patches between shrubs, patches under the dominant shrub Acacia etbaica, and patches under Euclea racemosa, an evergreen shrub, which supports the majority of naturally established Olea recruits. The ability of shrubs to offer protection against browsing goats was tested experimentally. Controlled shading was used to determine whether solar irradiation causes seedling mortality in environments without water stress. Data were analyzed using Kaplan–Meier survival analysis, Kruskal–Wallis analysis of variance (ANOVA), and one‐way ANOVA. Olea survival was significantly higher and shoot damage by goats was lower when planted under shrub cover compared to bare soil patches, particularly under Euclea canopies, although high shade levels reduced seedling performance. Reduction of solar radiation by shrub canopies and thus control of soil–water evaporation and seedling transpiration most likely controlled the observed facilitation. Planting under shrubs may increase seedling survival and assist regeneration of dry Afromontane vegetation. Preserving pioneers also reduces soil erosion and conserves biodiversity. Excluding livestock is essential for Olea woodland restoration and allows persistent but morphologically modified Olea shrubs to develop vigorous regrowth. Facilitative processes are guiding principles for assisted forest restoration, but above‐average rains may be critical to restore higher biomass levels in semiarid areas.  相似文献   

3.
The cycling of surface water, energy, nutrients, and carbon is different between semiarid grassland and shrubland ecosystems. Although differences are evident when grasslands are compared to shrublands, the processes that contribute to this transition are more challenging to document. We evaluate how surface redistribution of precipitation and plant responses to the resulting infiltration patterns could contribute to the changes that occur during the transition from grassland to shrubland. We measured soil water potential under grasses (Bouteloua eriopoda), shrubs (Larrea tridentata) and bare soil and changes in plant water relations and gas exchange following a 15 mm summer storm in the grassland–shrubland ecotone at the Sevilleta National Wildlife Refuge in central New Mexico USA. Following the storm, soil water potential (Ψs) increased to 30 cm depth beneath both grass and shrub canopies, with the greatest change observed in the top 15 cm of the soil. The increase in Ψs was greater beneath grass canopies than beneath shrub canopies. Ψs under bare soil increased only to 5 cm depth. The substantial redistribution of rainfall and different rooting depths of the vegetation resulted in high Ψs throughout most of the rooting volume of the grasses whereas soil moisture was unchanged throughout a large portion of the shrub rooting volume. Consistent with this pattern, predawn water potential (ΨPD) of grasses increased more than 5 MPa to greater than −1 MPa whereas ΨPD of shrubs increased to −2.5 MPa, a change of less than 2 MPa. Transpiration increased roughly linearly with ΨPD in both grasses and shrubs. In grasses, assimilation was strongly correlated with ΨPD whereas there was no relationship in shrubs where assimilation showed no significant response to the pulse of soil moisture following the storm. These data show that preferential redistribution of water to grass canopies enhances transpiration and assimilation by grasses following large summer storms. This process may inhibit shrubland expansion at the ecotone during periods without extreme drought.  相似文献   

4.
Question: Factors influencing seedling establishment are known to vary between open sites and those protected by plant cover. In many desert regions, protected microhabitats below shrubs are essential for establishment of many cactus species. Very little is known about these factors for Andean cacti and how the importance of vegetation cover varies with cactus species. Are Andean cacti associated more frequently to vegetation cover than to open ground? Are they associated to certain shrub species? Is the distributional pattern in relation to cover similar for different cactus species? In what microhabitat (below or away from shrubs) are cactus seeds more abundant? These questions are addressed for the case of an Andean semi‐desert. Location: Semi‐arid tropical Andes, La Paz department, Bolivia. Methods: We examined 132 isolated shrubs = 50 cm along a line across two microhabitats: areas below and away from shrubs/trees. Shrub crown size was measured. The among‐shrub samples were taken from open spaces contiguous to each of the sampled shrubs. In both microhabitats, all cactus species were recorded. The cardinal direction of the cacti was also registered. Correlation between canopy diameter and number of beneficiaries was evaluated for Prosopis flexuosa. The cactus seed bank in each microhabitat was also studied. Results and Conclusions: The four cactus species found behaved differently in relation to shrub canopies. These distributional differences could be due to differences in growth form. Columnar cacti apparently need the shade of shrubs. Only the columnar species is able to grow near the base of the tallest nurse species. The opuntioid cacti studied seem more facultative: although apparently preferring shrub un‐der‐canopies, they are able to establish in open ground. The globose cactus is the most indifferent to the presence of plant cover. These patterns parallel others found in North America. The capacity of different cacti to appear in open spaces could be related to vegetative propagation, and not necessarily to seedling tolerance of heat.  相似文献   

5.
Long-Term Effects of Reclamation Treatments on Plant Succession in Iceland   总被引:3,自引:0,他引:3  
The long‐term effects (20–45 years) of reclamation treatments on plant succession are examined at two localities in Iceland that were fertilized and seeded from 1954 to 1979 with perennial grasses or annual grasses, or left untreated. The areas that underwent reclamation treatments had significantly higher total plant cover (7–100%) than the untreated control plots (<5%), and floristic composition was usually significantly different between treated and untreated plots. Dwarf‐shrubs (Calluna vulgaris and Empetrum nigrum), bryophytes, biological soil crust, grasses, and shrubs characterized the vegetation in the treated plots, but low‐growing herbs that have negligible effects on the environment, such as Cardaminopsis petraea and Minuartia rubella, and grasses characterized the control plots. The seeded grass species had declined (<10%, the perennials) or disappeared (the annuals) but acted as nurse species that facilitated the colonization of native plants. It seems that by seeding, some factors that limit plant colonization were overcome. Soil nutrients, vegetation cover, litter, and biological soil crust were greater in the treated areas than the control plots. This may have enhanced colonization through an increase in soil stability and fertility, increased availability of safe microsites, increased moisture, and the capture of wind‐blown seeds. This study demonstrates the importance of looking at the long‐term effects of reclamation treatments to understand their impact on vegetation succession.  相似文献   

6.
火烧迹地柽柳灌丛资源岛特征及植被的自然恢复   总被引:2,自引:0,他引:2  
干旱半干旱地区灌丛资源岛特征及形成机制多有报道,但资源岛土壤对群落稳定性与火烧迹地植被的自然恢复作用尚不明确。以酒泉盐碱地柽柳灌丛地火烧3年后,自然恢复的柽柳(Tamarix ramosissima)及其冠下草本群落为研究对象,构建柽柳枯立株体量指数(SSI,Shrub Size Index)和恢复力综合指数,探讨了资源岛特征与植被恢复、冠下草本群落多样性的关系,量化不同大小柽柳灌丛的恢复力稳定性。结果表明:(1)在不同SSI的柽柳枯立株下土壤有机质和含水率明均显高于灌丛间地,形成了明显的资源岛特征。土壤有机质最大值出现在0—10 cm土层,中灌丛的肥力积聚效果最明显。(2)土壤主要以中性盐为主,在0—40 cm土层,灌丛区域土壤可溶性盐低于冠外,呈明显的盐谷特征,中灌丛的盐谷分布最为明显。(3)随着枯立株SSI的增大,柽柳新生枝条的数量及其高度均有所增大,冠下植物的高度、盖度、密度和地上植物量也明显高于灌丛间地,且灌丛越大恢复效果越明显。(4)灌下植物Simpson指数、Shannon⁃Wiener指数、Margalef指数和Pielou指数随着枯立株SSI的增大均先降后升,多样性指数低,群落结构简单。(5)恢复力综合指数随着枯立株SSI的增大呈先升后降的趋势,当SSI=52.17时灌丛群落的稳定性最强。柽柳较小时主要是冠下草本植物的恢复维持群落稳定性,随着灌丛的增大逐渐以柽柳灌木的恢复来维持群落稳定性。柽柳灌丛形成的高养低盐的土壤环境对植物群落稳定性的维持和植被的恢复有促进作用,对荒漠生态系统火烧迹地植被恢复和生态保护具有重要意义。  相似文献   

7.
Coexistence of woody and herbaceous plants may be governed by a complex set of direct and indirect interactions, whose relative importance have been rarely assessed. We experimentally studied woody species establishment in a mixed plant community by disentangling the potential role of such biotic interactions and the effect of environmental variations on them. Seedling establishment of the common eastern Mediterranean shrub species Sarcopoterium spinosum was investigated under different rainfall and light conditions, combined with the effect of the presence of adult shrubs and annual neighbors. We predicted that seedlings will be directly affected by competition with annuals with increasing water availability, while direct effects of adult shrubs will be positive via amelioration of water stress. Indirect effects were expected beneath shrub canopies due to reduced water stressed and light availability for both annuals and shrub seedlings, which may intensify competition between annuals and shrub seedlings. To test these predictions we performed field and garden experiments in which we combined manipulation of shrub and annual presence with manipulations of water availability and light conditions to simulate the effect of shrub canopy. In contrast to our prediction, shrub seedling establishment was not facilitated but inhibited by adult shrubs because of light limitation. As expected, annuals had direct negative effects on shrub seedlings under wet conditions, which shifted to neutral or positive effects under dry conditions. Thus, interactions among shrubs and annuals, and in particular the release from competition during drought years, leads to a counterintuitive positive effect of drought on shrub seedling establishment. Our findings point to the importance of experimentally studying multidimensional interactions for coexistence of different life forms and to the underestimated role of light for success in water‐limited ecosystems.  相似文献   

8.
Abstract. Competition and facilitation may occur simultaneously in plant communities, and the prevalence of either process depends on abiotic conditions. Here we attempt a community‐wide approach in the analysis of plant interactions, exploring whether in a semi‐arid environment positive or negative interactions predominate and whether there are differences among co‐occurring shrub species. Most shrubs in our plot exerted significant effects on their understorey communities, ranging from negative to positive. We found a clear case of interference and another case where the effect was neutral, but facilitation predominated and the biomass of annuals under most shrubs in our community was larger than in gaps. Effects on soil water and fertility were revealed as the primary source of facilitation; the build‐up of soil organic matter changed soil physical properties and improved soil water relations. Facilitation by shrubs involved decoupling of soil temperature and moisture. Sheltering from direct radiation had an effect on productivity, but significant differences in understorey biomass did not parallel understorey light environment. A positive balance of the interaction among plants, essentially mediated by changes in soil properties, is the predominant outcome of plant interactions in this semi‐arid community.  相似文献   

9.
Questions: What are the effects of a shrub (Haloxylon ammodendron) on spatial patterns of soil moisture in different seasons? How does productivity of understorey annuals respond to these effects? Are such effects always positive for annuals under shrubs? Location: South Gurbantunggut Desert, northwest China. Methods: Using geostatistics, we explored seasonal patterns of topsoil moisture in a 12 × 9‐m plot over the growing season. To determine spatial patterns of understorey annuals in response to H. ammodendron presence, biomass of annuals was recorded in four 0.2 × 5.0‐m transects from the centre of a shrub to the space between shrubs (interspace). We also investigated vertical distribution of root biomass for annuals and soil moisture dynamics across soil profiles in shrub‐canopied areas and interspaces. Results: Topsoil moisture changed from autocorrelation in the wet spring to random structure in the dry season, while soil moisture below 20 cm was higher in shrub‐canopied areas. Across all microhabitats, soil moisture in upper soil layers was higher than in deeper soil layers during the spring wet season, but lower during summer drought. Topsoil was close to air‐dry during the dry season and developed a ‘dry sand layer’ that reduced evaporative loss of soil water from deeper layers recharged by snowmelt in spring. Aboveground biomass of understorey annuals was lowest adjacent to shrub stems and peaked at the shrub margin, forming a ‘ring’ of high herbaceous productivity surrounding individual shrubs. To acclimate to drier conditions, annuals in interspaces invested more root biomass in deeper soil with a root/shoot ratio (R/S) twice that in canopied areas. Conclusions: Positive and negative effects of shrubs on understorey plants in arid ecosystems are commonly related to nature of the environmental stress and tested species. Our results suggest there is also microhabitat‐dependence in the Gurbantunggut Desert. Soil water under H. ammodendron is seasonally enriched in topsoil and deeper layers. Understorey annuals respond to the effect of shrubs on soil water availability with lower R/S and less root biomass in deeper soil layers and develop a ‘ring’ of high productivity at the shrub patch margin where positive and negative effects of shrubs are balanced.  相似文献   

10.
A coupled energy and water balance model is used to simulate the effects of large tree canopies on soil moisture and water stress across a series of sites spanning a regional moisture gradient in southern Africa. The model tracks evapotranspiration from five components of the land surface at each site—the tree canopy, the grass under and between tree canopies, and the bare soil under and between tree canopies. The soil moisture dynamics are simulated at daily time steps and driven by a stochastic model of storm arrivals and storm depth. Evapotranspiration is modeled using the Priestley-Taylor approach, with potential evapotranspiration scaled by soil moisture availability. The soil moisture under tree canopies is compared to the soil moisture between tree canopies, and differences in average annual soil moisture stress conditions are analyzed at each site. The spatial distribution of large trees has important consequences for small-scale soil moisture dynamics across the rainfall gradient. The results indicate that tree canopies serve to reduce soil moisture stress of under-canopy vegetation in the middle of the rainfall gradient. At the dry end of the rainfall gradient, the effect of tree canopies on soil moisture is dependent on the amount of rainfall received in a given growing season.  相似文献   

11.
Abstract. The influence of canopy trees and shrubs on under‐storey plants is complex and context‐dependent. Canopy plants can exert positive, negative or neutral effects on production, composition and diversity of understorey plant communities, depending on local environmental conditions and position in the landscape. We studied the influence of Prosopis velutina (mesquite) on soil moisture and nitrogen availability, and understorey vegetation along a topographic gradient in the Sonoran Desert. We found significant increases in both soil moisture and N along the gradient from desert to riparian zone. In addition, P. velutina canopies had positive effects, relative to open areas, on soil moisture in the desert, and soil N in both desert and intermediate terrace. Biomass of understorey vegetation was highest and species richness was lowest in the riparian zone. Canopies had a positive effect on biomass in both desert and terrace, and a negative effect on species richness in the terrace. The effect of the canopy depended on landscape position, with desert canopies more strongly influencing soil moisture and biomass and terrace canopies more strongly influencing soil N and species richness. Individual species distributions suggested interspecific variation in response to water‐ vs. N‐availability; they strongly influence species composition at both patch and landscape position levels.  相似文献   

12.
Summary Suppression of annuals at various intensities was observed around some shrubs ofCoridothymus capitatus growing on kurkar formation in the coastal hills of Israel. The phenomenon was clearly observed as annuals-free belts of 15–20 cm around ‘aggressive’ shrubs. Quantitatively, density of annuals decreased by 16 fold in the annual-free belts as compared to a distance of 60–80 cm from the canopies of the shrubs. Their dry matter was decreased by 5.4 fold around the shrubs. Suppression rate of emergence of planted seeds of annuals (Plantago psyllium andErucaria hispanica) early in the season was 45% higher around ‘aggressive’C. capitatus than that around ‘non-aggressive’ ones. In the laboratory, seed germination of the annuals was strongly suppressed by diffusates and volatiles from shoots, as well as from their water extracts and their essential oils. Incubation of fresh shoots ofC. capitatus in soil collected from around ‘non-aggressive’ shrubs, for 7 days, increased population levels of actinomycetes by 9.6 fold and by 36.7 fold when soil was collected from around ‘aggressive’ shrubs. Isolates of some soil-borne actinomycetes inhibited germination of the test plantsLactuca sativa andAnastatica hierochuntica on agar plates (4–98%). The preliminary results indicate a possible synergistic inhibitory effect induced by essential oils of the aromatic shrub and the phytototic activity of actinomycetes.  相似文献   

13.
Competition for fresh water between agriculture and domestic and industrial uses is increasing worldwide. This is forcing subsistence and commercial agriculture to produce more with less water. Consequently, it is crucial to properly and efficiently manage water resources. This requires accurate determination of crop water loss into the atmosphere, which is greatly influenced by the exchange of energy and mass between the surface and the atmosphere. Measurement of these exchange processes can best be accomplished by micrometeorological methods. However, most micrometeorological methods are very expensive, difficult to set up, require extensive post-data collection corrections and/or involve a high degree of empiricism. This review discusses estimation of evapotranspiration using relatively inexpensive micrometeorological methods in temperature-variance (TV), surface renewal (SR) and mathematical models. The TV and SR methods use high frequency air temperature measurements above a surface to estimate sensible heat flux (H). The latent heat flux (λE), and hence evapotranspiration, is calculated as a residual of the shortened surface energy balance using measured or estimated net radiation and soil heat flux, assuming surface energy balance closure is met. For crops with incomplete cover, the disadvantage of these methods is that they do not allow separation of evapotranspiration into soil evaporation and plant transpiration. The mathematical models (single- and dual-source) involve a combination of radiation and resistance equations to determine evapotranspiration from inputs of automatic weather station observations. Single-source models (Penman-Monteith type equations) are used to determine evapotranspiration over homogeneous surfaces. The dual-source models, basically an extension of single-source models, determine soil evaporation and plant transpiration separately over heterogeneous or sparse vegetation. These mathematical models have also been modified to accommodate inputs of remotely-sensed radiometric surface temperatures that enable estimation of evapotranspiration on a regional and global scale.  相似文献   

14.
Question: How do two shrubs with contrasting life‐history characteristics influence abundance of dominant plant taxa, species richness and aboveground biomass of grasses and forbs, litter accumulation, nitrogen pools and mineralization rates? How are these shrubs – and thus their effects on populations, communities and ecosystems – distributed spatially across the landscape? Location: Coastal hind‐dune system, Bodega Head, northern California. Methods: In each of 4 years, we compared vegetation, leaf litter and soil nitrogen under canopies of two native shrubs –Ericameria ericoides and the nitrogen‐fixing Lupinus chamissonis– with those in adjacent open dunes. Results: At the population level, density and cover of the native forb Claytonia perfoliata and the exotic grass Bromus diandrus were higher under shrubs than in shrub‐free areas, whereas they were lower under shrubs for the exotic grass Vulpia bromoides. In contrast, cover of three native moss species was highest under Ericameria and equally low under Lupinus and shrub‐free areas. At community level, species richness and aboveground biomass of herbaceous dicots was lower beneath shrubs, whereas no pattern emerged for grasses. At ecosystem level, areas beneath shrubs accumulated more leaf litter and had larger pools of soil ammonium and nitrate. Rates of nitrate mineralization were higher under Lupinus, followed by Ericameria and then open dune. At landscape level, the two shrubs – and their distinctive vegetation and soils – frequently had uniform spatial distributions, and the distance separating neighbouring shrubs increased as their combined sizes increased. Conclusions: Collectively, these data suggest that both shrubs serve as ecosystem engineers in this coastal dune, having influences at multiple levels of biological organization. Our data also suggest that intraspecific competition influenced the spatial distributions of these shrubs and thus altered the distribution of their effects throughout the landscape.  相似文献   

15.
Totland  Ørjan  Esaete  Josephine 《Plant Ecology》2002,161(2):157-166
It is believed that abiotic, rather than biotic, factors are ofparamount importance to the performance of plants in alpine and arctichabitats.This study examines how Salix lapponum affects 15associated species by comparing individual growth and reproductive performanceof adult plants growing inside and outside shrub canopies. The study alsoincludes experimental removal of Salix lapponum shrubs,andmeasurements of shoot density of five species inside and outside intactcanopies. Mean above-ground plant weight of nine species was significantlyhigher inside canopies compared to outside. Mean leaf number inside canopieswassignificantly higher for two species, and total seed number was significantlyhigher inside for one species. Mean leaf number was significantly lower insidecanopies compared to outside for one species. Mean seed weight wassignificantlylower inside canopies for one species. Removal of Salixlapponum shrubs increased bulbil weight of Bistortavivipara and seed number and plant weight of Euphrasiafrigida. These results suggest that canopy removal relaxedcompetition. Shoot density was substantially higher outside canopies comparedtoinside for four species and slightly higher outside for one species. Soilmoisture, soil organic content, soil pH, and temperature inside canopies werenot significantly different from outside, whereas photosynthetically activeradiation (PAR) was markedly reduced inside canopies. Increased growth insidecanopies is likely a compensatory mechanism to decreased PAR, which enableplants inside canopies to achieve reproductive outputs that equals those onoutside plants. The lower plant density inside canopies is probably caused byreduced germination and establishment possibilities there, due to reduced PARand higher litter accumulation.  相似文献   

16.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

17.
P. Petrou 《Plant biosystems》2013,147(3):522-533
Abstract

The present study was carried out in abandoned fields in central Cyprus. The main objective was to examine the impact of the regeneration environment on the establishment and survival of Pinus brutia seedlings. Sixty-four permanent plots of 16 m2 were randomly established in two distinct sites. Four regeneration environments were recorded: (a) bare soil under the crown of a P. brutia tree, (b) soil under the canopy of a P. brutia tree and low shrubs, (c) bare soil in open areas, and (d) soil under the canopy of low shrubs in open areas. All P. brutia seedlings were classified in categories according to their regeneration environment. In all plots, the density of the P. brutia seedlings was measured in three different seasons (spring, summer, autumn). Soil temperatures were recorded, samples of surface soil were taken and the percentage of soil organic matter was measured. The main conclusions drawn from this research were the following: (1) the mature P. brutia trees and low shrubs facilitate the establishment and especially the survival of P. brutia seedlings, as all seedlings in bare vegetation ground had died by the end of the growing season, and (2) the importance of facilitation increases as abiotic stress rises.  相似文献   

18.
土壤-植物下垫面对微生态环境的影响   总被引:7,自引:0,他引:7  
综述了土壤植物下垫面对辐射平衡、热量条件、土壤侵蚀、土壤肥力、光能利用率等微生态环境的影响.结果表明,有植被下垫面的反射率、有效辐射、土壤热通量的日变幅和感热通量均小于荒坡裸地;坡地植草和减少翻耕次数有利于水土保持;下垫面栽种牧草可提高土壤肥力和光能利用率.这对合理开发和利用土地资源具有一定的参考价值  相似文献   

19.
Shrub expansion may reduce summer permafrost thaw in Siberian tundra   总被引:1,自引:0,他引:1  
Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous shrubs are already expanding, in response to climate warming. The results from transect studies suggest that increasing shrub cover will impact significantly on the surface energy balance. However, little is known about the direct effects of shrub cover on permafrost thaw during summer. We experimentally quantified the influence of Betula nana cover on permafrost thaw in a moist tundra site in northeast Siberia with continuous permafrost. We measured the thaw depth of the soil, also called the active layer thickness (ALT), ground heat flux and net radiation in 10 m diameter plots with natural B. nana cover (control plots) and in plots in which B. nana was removed (removal plots). Removal of B. nana increased ALT by 9% on average late in the growing season, compared with control plots. Differences in ALT correlated well with differences in ground heat flux between the control plots and B. nana removal plots. In the undisturbed control plots, we found an inverse correlation between B. nana cover and late growing season ALT. These results suggest that the expected expansion of deciduous shrubs in the Arctic region, triggered by climate warming, may reduce summer permafrost thaw. Increased shrub growth may thus partially offset further permafrost degradation by future temperature increases. Permafrost models need to include a dynamic vegetation component to accurately predict future permafrost thaw.  相似文献   

20.
Many studies have focused on soil nutrient heterogeneity and islands of fertility in arid ecosystems. However, few have been conducted on an oasis-desert transitional zone where there is a vegetation pattern changing from shrubs to annual herbs. The goal of the present study was to understand vegetation and soil nutrient heterogenity along an oasis-desert transitional zone in northwestern China. Three replicated sampling belts were selected at 200 m intervals along the transitional zone. Twenty-one quadrats (10 x 10m) at 50m intervals were located along each sampling belt. The vegetation cover was estimated through the quadrats, where both the soil under the canopy and the open soil were sampled simultaneously. The dominated shrub was Haloxylon ammodendron in the areas close to the oasis and Nitraria tangutorum dominated the areas close to the desert. In general, along the transitional zone the vegetation cover decreased within 660 m, increased above 660 m and decreased again above 1 020 m (close to the desert). The soil nutrients (organic matter, total N, NO3^- and NH4^+) showed significant differences along the zone. The soil nutrients except the soil NH4^+ under the canopy were higher than those in open soil, confirming "islands of fertility" or nutrient enrichment. Only a slight downward trend of the level of "islands of fertility" for soil organic matter appeared in the area within 900 m. Soil organic matter both under canopy and in interspace showed a positive correlation with the total vegetation cover, however, there was no significant correlation between the other soil nutrients and the total vegetation cover. We also analyzed the relationship between the shrubs and annuals and the soil nutrients along the zone. Similarly, there was no significant correlation between them, except soil organic matter with the annuals. The results implied that annual plants played an important role in soil nutrient enrichment in arid ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号