首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highlights
1 Deletion of residues 156–157 warps the neighboring beta-sheet and leads NTD and RBD to shift.
2 T859N stabilizes the packing of the 630 loop motif to make RBD standing transition more difficult.
3 The overall structures of the closed state S complex from different variants resemble each other.
4 Mutations in FPPR may affect the overall structure of the trimeric spike protein.  相似文献   

2.
BackgroundMany studies have presented virus sequences which suggest the existence of a variety of putative new phleboviruses transmitted by sandflies in the Old World. However, in most of these studies, only partial sequences in the polymerase or the nucleoprotein genes were characterised. Therefore to further our understand of the presence and potential medical importance of sandfly-borne phleboviruses that circulate in southern Anatolia, we initiated field campaigns in 2012 and 2013 designed to identify, isolate and characterise phleboviruses in sandflies in this regionConclusions/SignificanceThe results indicate that a variety of phleboviruses are co-circulating in this region of southern Anatolia. Based on our studies, these new viruses clearly belong to genetic groups that include several human pathogens. However, whether or not Toros and Zerdali viruses can infect humans and cause diseases such as sandfly fever remains to be investigated.  相似文献   

3.
Highlights
1. Two monoclonal antibodies against newly emerged porcine deltacoronavirus nucleocapsid protein were prepared.
2. The epitopes that these two monoclonal antibodies recognized on nucleocapsid protein were identified.
3. The monoclonal antibody 6B7 recognized a linear epitope of N protein, while the 7F8 recognized a conformational epitope.
4. Conservation of the identified epitopes between different coronaviruses was analyzed.  相似文献   

4.
The integral membrane protein Ptr2p transports di/tri-peptides into the yeast Saccharomyces cerevisiae. The sequence FYXXINXG (FYING motif) in the 5th transmembrane domain (TM5) is invariably conserved among the members of the PTR (Peptide TRansport) family ranging from yeast to human. To test the role of TM5 in Ptr2p function, Ala-scanning mutagenesis of the 22 residues comprising TM5 was completed. All mutated transporters, with the exception of the Y248A mutant, were expressed as determined by immunoblots. In peptide-dependent growth assays, ten mutants of the non-FYING residues grew as well as wild-type Ptr2p on all twelve different peptides tested. All of the FYING motif mutants, except the non-expressed Y248A, plus seven other mutants in TM5 exhibited differential growth on peptides including Leu-Leu and Met-Met-Met indicating that these mutations conferred substrate preference. In assays measuring direct uptake of the radioactive peptides 3H-Leu-Leu or 14C-Met-Met-Met, the F, I and G mutants of the FYING motif did not demonstrate accumulation of these peptides over a ten minute interval. The mutation N252A of the FYING motif, along with L240A, M250A, and L258A, exhibited differential substrate preference for Met-Met-Met over Leu-Leu. Other mutations (T239A, Q241A, N242A, M245A, and A260) resulted in preference for Leu-Leu over Met-Met-Met. These data demonstrate that TM5, in particular its conserved FYING motif, is involved in substrate preference of Ptr2p.  相似文献   

5.
Buchko GW  Robinson H 《FEBS letters》2012,586(4):350-355
The crystal structure for cce_0566 (171 aa, 19.4 kDa), a DUF269 annotated protein from the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142, was determined to 1.60 Å resolution. Cce_0566 is a homodimer with each molecule composed of eight α-helices folded on one side of a three strand anti-parallel β-sheet. Hydrophobic interactions between the side chains of largely conserved residues on the surface of each β-sheet hold the dimer together. The fold observed for cce_0566 may be unique to proteins in the DUF269 family, hence, the protein may also have a function unique to nitrogen fixation. A solvent accessible cleft containing conserved charged residues near the dimer interface could represent the active site or ligand-binding surface for the protein’s biological function.Structured summary of protein interactionsDUF269 and DUF269 bind by x-ray crystallography (View interaction)  相似文献   

6.

Background  

Biological evolution conserves protein residues that are important for structure and function. Both protein stability and function often require a certain degree of structural co-operativity between spatially neighboring residues and it has previously been shown that conserved residues occur clustered together in protein tertiary structures, enzyme active sites and protein-DNA interfaces. Residues comprising protein interfaces are often more conserved compared to those occurring elsewhere on the protein surface. We investigate the extent to which conserved residues within protein-protein interfaces are clustered together in three-dimensions.  相似文献   

7.
Filamentous actinomycetes are commercially widely used as producers of natural products. However, the mycelial lifestyle of actinomycetes has been a major bottleneck in their commercialization, and screening is difficult due to their poor growth on microtiter plates. We previously demonstrated that the enhanced expression of the cell division activator protein SsgA results in the fragmented growth of streptomycetes, with enhanced growth rates and improved product formation. We here describe a novel and efficient method to create, maintain, and screen mutant libraries in streptomycetes and the application of this method for the functional analysis of Streptomyces coelicolor ssgA. The variants were amplified directly from deep-frozen biomass suspensions. Around 800 ssgA variants, including single-amino-acid-substitution mutants corresponding to more than half of all SsgA residues, were analyzed for their abilities to restore sporulation to an ssgA mutant. The essential residues were clustered in three main sections, and hardly any were in the carboxy-terminal third of the protein. The majority of the crucial residues were conserved among all SsgA-like proteins (SALPs). However, the essential residues L29, D58, and S89 were conserved only in SsgA orthologues and not in other SALPs, suggesting an SsgA-specific function.  相似文献   

8.
Highlights:
1. A replication-competent recombinant VSV with RABV-G protein replacement was generated.
2. Single dose of VSV-RABVG immunization induce potent antigen-specific humoral immune response, especially the virus neutralizing antibodies.
3. Mice intranasally immunized with single dose of VSV-RABVG were 100% protected upon RABV challenge.  相似文献   

9.
We determined the complete nucleotide sequence of the small (S) RNA segment of Uukuniemi virus, the prototype of the Uukuvirus genus within the Bunyaviridae family. The RNA, which is 1,720 nucleotides long, contains two nonoverlapping open reading frames. The 5' end of one strand (complementary to the viral strand) encodes the nonstructural protein NSs (273 residues; molecular weight, 32,019), whereas the 5' end of the viral-sense strand encodes the nucleocapsid protein N (254 residues; molecular weight, 28,508). Thus, the S RNA uses an ambisense coding strategy previously described for the S segment of two phleboviruses and the arenaviruses. The localization of the N protein within the S RNA sequence was confirmed by amino-terminal sequence analysis of all five possible cyanogen bromide fragments obtained from purified N protein. Northern (RNA) blot analyses with strand-specific probes showed that the N and NSs proteins are translated from subgenomic mRNAs about 800 and 850 nucleotides long, respectively. These mRNAs are apparently transcribed from full-length S RNAs of opposite polarities. The two mRNA species were also detected in virus-infected cells. Interestingly, highly purified virions contained full-length S RNA copies of both polarities at a ratio of about 10:1. In contrast, virions contained exclusively negative-strand copies of the M RNA segment. The possible significance of these results for viral infection is discussed. The amino acid sequence of the N protein showed 35 and 32% homology (identity) with the N protein of Punta Toro and sandfly fever Sicilian viruses, two members of the Phlebovirus genus. The NSs proteins were much less related (about 15% identity). In addition, the extreme 5' and 3' ends of the S RNA, which are complementary to each other, also showed a high degree of conservation with the two phleboviruses. These results indicate that the uukuviruses and phleboviruses are evolutionarily related and suggest that the two genera could be merged into a single genus within the Bunyaviridae family.  相似文献   

10.
ObjectiveApolipoprotein A1 (APOA1) is essential to reverse cholesterol transport, a physiologically important process that protects against atherosclerotic cardiovascular disease. APOA1 is a 28 kDa protein comprising multiple lipid-binding amphiphatic helices initialized by proline residues, which are conserved across multiple species. We tested the hypothesis that the evolutionarily conserved residues are essential to high density lipoprotein (HDL) function.ApproachWe used biophysical and physiological assays of the function of APOA1P➔A variants, i.e., rHDL formation via dimyristoylphosphatidylcholine (DMPC) microsolubilization, activation of lecithin: cholesterol acyltransferase, cholesterol efflux from human monocyte-derived macrophages (THP-1) to each variant, and comparison of the size and composition of HDL from APOA1−/− mice receiving adeno-associated virus delivery of each human variant.ResultsDifferences in microsolubilization were profound and showed that conserved prolines, especially those in the C-terminus of APOA1, are essential to efficient rHDL formation. In contrast, P➔A substitutions produced small changes (−25 to +25%) in rates of cholesterol efflux and no differences in the rates of LCAT activation. The HDL particles formed following ectopic expression of each variant in APOA1−/− mice were smaller and more heterogeneous than those from control animals.ConclusionStudies of DMPC microsolubilization show that proline residues are essential to the optimal interaction of APOA1 with membranes, the initial step in cholesterol efflux and HDL production. In contrast, P➔A substitutions modestly reduce the cholesterol efflux capacity of APOA1, have no effect on LCAT activation, but according to the profound reduction in the size of HDL formed in vivo, P➔A substitutions alter HDL biogenesis, thereby implicating other cellular and in vivo processes as determinants of HDL metabolism and function.  相似文献   

11.
The features that govern the interaction of ligand binding proteins with membrane permeases of cognate ABC transporters are largely unknown. Using sequence alignments and structural modeling based on the structure of the Escherichia coli BtuCD vitamin B12 transporter, we identified six conserved basic residues in the permease, comprised of FhuB and FhuG proteins, in the ferrichrome transporter of Staphylococcus aureus. Using alanine-scanning mutagenesis we demonstrate that two of these residues, FhuB Arg-71 and FhuG Arg-61, play a more dominant role in transporter function than FhuB Arg-74 and Arg-311, and FhuG Arg-64 and Lys-306. Moreover, we show that at positions 71 and 61 in FhuB and FhuG, respectively, arginine cannot be substituted for lysine without loss of transporter function. Previously, our laboratory demonstrated the importance of conserved acidic residues in the ferrichrome binding protein, FhuD2. Taken together, these results support the hypothesis that Glu-Arg salt bridges are critical for the interaction of the ligand binding protein with the transmembrane domains FhuB and FhuG. This hypothesis was further studied by “charge swapping” experiments whereby we constructed a S. aureus strain expressing FhuD2 with conserved residues Glu-97 and Glu-231 replaced by Arg and FhuB and FhuG with conserved basic residues Arg-71 and Arg-61, respectively, replaced by Glu. A strain containing this combination of substitutions restored partial function to the ferrichrome transporter. The results provide a direct demonstration of the functional importance of conserved basic residues on the extracellular surface of the ferrichrome permease in the Gram-positive bacterium S. aureus.  相似文献   

12.
Highly conserved glycine residues within span I and span II of the phenylalanine and tyrosine transporter PheP were shown to be important for the function of the wild-type protein. Replacement by amino acids with increasing side chain volume led to progressive loss of transport activity. Second-site suppression studies performed with a number of the primary mutants revealed a tight packing arrangement between spans I and II that is important for function and an additional interaction between spans I and III. We also postulate that a third motif, GXXIG, present in span I and highly conserved within different members of the amino acid-polyamine-organocation family, may function as a dimerization motif. Surprisingly, other highly conserved residues, such as Y60 and L41, could be replaced by various residues with no apparent loss of activity.  相似文献   

13.
Highlights
1. Seven monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid protein are produced, which can be applied in ELISA, Western blotting, and immunofluorescence staining.
2. A pair of mAbs, 2G11/bio-1C7, can detect SARS-CoV-2 nucleocapsid protein as low as 15 pg/well in the double sandwich ELISA.
3. The mAb, 2G11, shows 97.4% sensitivity and 100% specificity for diagnosing the human blood samples.  相似文献   

14.
To understand the role of the only universally conserved hydrophobic residue among all the members of the sHsp family, this extremely well conserved Leu122 residue in Hsp16.3 was replaced by valine, alanine, asparigine, or aspartate residues. Only very small amounts of the L122D and L122N mutant Hsp16.3 proteins were expressed in the transformed E. coli; however, both the L122V and L122A were readily expressed. The L122V and L122A mutant proteins had similar oligomeric structures to the wild-type protein at room temperature. Examination of the L122A mutant protein by native pore gradient PAGE and CD spectroscopy, however, revealed a smaller oligomeric size and different secondary structure at 37°C. Both L122V and L122A mutant proteins exhibited significantly lowered chaperone activities. Observations reported here suggest a very important role of this only universally conserved Leu residue in both the formation of specific oligomeric structures and the molecular chaperone activities of Hsp16.3.  相似文献   

15.
【目的】START家族蛋白的突变或者错误表达使哺乳动物产生肾上腺皮质增生、乳腺癌和结肠癌等疾病;START家族蛋白是植物发育过程中重要的调节因子;尚未阐明START家族蛋白作为细菌必需基因的作用机制。结核分枝杆菌必需基因Rv0164属于START家族,功能未知,研究Rv0164作用机制将为START家族分子机制增添新理论。【方法】生物信息学方法分析Rv0164序列特征;模式菌耻垢分枝杆菌中表达Rv0164并分析蛋白的细胞定位;Co-immunoprecipitation(Co-IP)方法垂钓Rv0164的相互作用蛋白,质谱鉴定互作蛋白,酵母双杂交和Pull down验证蛋白相互作用。【结果】Rv0164的N端17个氨基酸在分枝杆菌中不保守;Rv0164无信号肽;Rv0164定位在细胞质中,受蛋白降解机制调控,该机制在细菌生长平台期比对数期活性弱;N端缺失使Rv0164在平台期和对数期均不稳定;Rv0164结合多个胞内蛋白。【结论】Rv0164的N端肽段增加了蛋白的稳定性;Rv0164是一个胞内蛋白;Rv0164能够结合细菌生存必需蛋白。  相似文献   

16.
The alphavirus nucleocapsid core is formed through the energetic contributions of multiple noncovalent interactions mediated by the capsid protein. This protein consists of a poorly conserved N-terminal region of unknown function and a C-terminal conserved autoprotease domain with a major role in virion formation. In this study, an 18-amino-acid conserved region, predicted to fold into an alpha-helix (helix I) and embedded in a low-complexity sequence enriched with basic and Pro residues, has been identified in the N-terminal region of the alphavirus capsid proteins. In Sindbis virus, helix I spans residues 38 to 55 and contains three conserved leucine residues, L38, L45, and L52, conforming to the heptad amino acid organization evident in leucine zipper proteins. Helix I consists of an N-terminally truncated heptad and two complete heptad repeats with beta-branched residues and conserved leucine residues occupying the a and d positions of the helix, respectively. Complete or partial deletion of helix I, or single-site substitutions at the conserved leucine residues (L45 and L52), caused a significant decrease in virus replication. The mutant viruses were more sensitive to elevated temperature than wild-type virus. These mutant viruses also failed to accumulate cores in the cytoplasm of infected cells, although they did not have defects in protein translation or processing. Analysis of these mutants using an in vitro assembly system indicated that the majority were defective in core particle assembly. Furthermore, mutant proteins showed a trans-dominant negative phenotype in in vitro assembly reactions involving mutant and wild-type proteins. We propose that helix I plays a central role in the assembly of nucleocapsid cores through coiled coil interactions. These interactions may stabilize subviral intermediates formed through the interactions of the C-terminal domain of the capsid protein and the genomic RNA and contribute to the stability of the virion.  相似文献   

17.
The entire amino acid sequence of bifunctional alginate lyase from Pseudoalteromonas sp. strain No. 272 were determined by two approaches, Edman degradation of the peptides obtained from protease digestion of the enzyme protein and analysis of PCR products of the structural gene. The former resulted in incomplete amino acid sequence in the entire sequence, due to lacking of the proper peptides from the protease digestion. To compensate for this lack of sequences we applied the method of PCR of the structural gene that was initially elucidated from the primers designed from N- and C-terminal amino acid sequences of the enzyme. The results of the amino acid sequences from these two approaches showed good agreement. The enzyme consisted of 233 amino acid residues with a molecular mass of 25,549.5, including the sole W and cystine residue. The sequence homology search among the other alginate lyases from different origins indicated that they were very weakly homologous, with the exception of the sequence homology (80.3%) of Pseudoalteromonas elyakovii alginate lyase. The consensus sequence, YFKhG + Y-Q (Wong, T. Y., Preston, L. A., and Schiller, N. L. 2000. Annu. Rev. Microbiol. 54: 289–340) in the C-terminal regions was conserved. The kinetic analyses of chemical modification of some amino acid residues of the enzyme showed that W, K, and Y appeared to be important in the enzyme function.  相似文献   

18.
《Process Biochemistry》2014,49(1):95-101
Silicatein has high sequence identity and similarity with that of cathepsin L. In silicatein, serine replaces the active-site cysteine that is found in cathepsin L. Here, we obtained hypothetical cathepsin-like protein (CAT) from Nematostella vectensis which is 55% identical and 75% similar to mature silicatein alpha (SIL) of Suberites domuncula. When this protein was expressed in Escherichia coli, it displayed protease activity with both N-carbobenzoxy-l-phenylalanyl-l-arginine-4-methylcoumaryl-7-amide (Z-FR-AMC) and gelatin substrates, as well as silica-condensing activity using the tetraethoxy silane (TEOS) substrate. To increase its silica-forming activity and stability, some residues including the active site cysteine, were mutated into conserved silicatein residues, resulting in a mutant with 65% identity and 79% similarity to SIL. The mutant silicatein-like cathepsin (SLC) had increased expression levels in E. coli, and silica-forming activity comparable to that of SIL. In addition, SLC exhibited decreased protease activity as compared to that of CAT. Both CAT and SLC produced silica particles of sizes smaller than 50 nm, which increased to 200–300 nm in the presence of a structure-directing agent, such as Triton X-100. In conclusion, CAT was evolved to function as a biosilica-forming protein, and SLC was engineered by mutating CAT residues into conserved SIL residues to produce various silica-based materials.  相似文献   

19.
ABSTRACT

Short linear motifs, known as LC3-interacting regions (LIRs), interact with mactoautophagy/autophagy modifiers (Atg8/LC3/GABARAP proteins) via a conserved universal mechanism. Typically, this includes the occupancy of 2 hydrophobic pockets on the surface of Atg8-family proteins by 2 specific aromatic and hydrophobic residues within the LIR motifs. Here, we describe an alternative mechanism of Atg8-family protein interaction with the non-canonical UBA5 LIR, an E1-like enzyme of the ufmylation pathway that preferentially interacts with GABARAP but not LC3 proteins. By solving the structures of both GABARAP and GABARAPL2 in complex with the UBA5 LIR, we show that in addition to the binding to the 2 canonical hydrophobic pockets (HP1 and HP2), a conserved tryptophan residue N-terminal of the LIR core sequence binds into a novel hydrophobic pocket on the surface of GABARAP proteins, which we term HP0. This mode of action is unique for UBA5 and accompanied by large rearrangements of key residues including the side chains of the gate-keeping K46 and the adjacent K/R47 in GABARAP proteins. Swapping mutations in LC3B and GABARAPL2 revealed that K/R47 is the key residue in the specific binding of GABARAP proteins to UBA5, with synergetic contributions of the composition and dynamics of the loop L3. Finally, we elucidate the physiological relevance of the interaction and show that GABARAP proteins regulate the localization and function of UBA5 on the endoplasmic reticulum membrane in a lipidation-independent manner.

Abbreviations: ATG: AuTophaGy-related; EGFP: enhanced green fluorescent protein; GABARAP: GABA-type A receptor-associated protein; ITC: isothermal titration calorimetry; KO: knockout; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NMR: nuclear magnetic resonance; RMSD: root-mean-square deviation of atomic positions; TKO: triple knockout; UBA5: ubiquitin like modifier activating enzyme 5  相似文献   

20.
The E. coli cls open reading frame (ORF) predicts a 54.8 kDa polypeptide, whereas mature cardiolipin (CL) synthase is 46 kDa. The N-terminal region extending to residue 60 contains several conserved residues but is not essential for enzyme activity. A deletion mutant that is missing residues 2-60 produces a fully active protein. These findings raise the question of why several residues in a region that is not required for enzyme activity are conserved. Recombinant DNA technology was used to introduce an EYMPE epitope (EE) tag into the interior of CL synthase. The EE tagged polypeptide retained the biological properties of wild type CL synthase, including full enzymatic activity. Site-directed mutagenesis was used to alter conserved residues in the N-terminal region. An EE tagged CL synthase in which Leu-7 and Val-8 were both replaced by Ser residues retains in vitro activity but loses most of its in vivo activity. Furthermore, the mutant protein has a higher apparent molecular mass than its parent protein. Taken together, these findings suggest that conserved residues L7 and V8 play a role in polypeptide processing, topology, or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号