首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的建立人BAFF转基因斑马鱼模型,探讨其在自身免疫性疾病发病中的作用。方法RT-PCR法由人淋巴瘤细胞克隆了人BAFF基因全长855bp蛋白编码区域,构建表达人BAFF重组质粒Tol2-hBAFF,体外细胞转染并通过免疫印迹法验证蛋白表达。重组载体经显微注射斑马鱼受精卵后,GFP荧光跟踪并筛选阳性鱼。qPCR法检测早期免疫相关基因表达情况。结果人BAFF-GFP融合蛋白可成功表达,利用Tol2-hBAFF重组质粒显微注射斑马鱼受精卵可获得表达人BAFF的转基因斑马鱼,且表达人BAFF斑马鱼1dpf胚胎中TCRAC明显高表达,而Ikaros则表达量显著降低,表明在斑马鱼胚胎中表达人BAFF蛋白会造成早期淋巴系统中基因的过早表达。结论建立的表达人BAFF的转基因斑马鱼,可为系统性红斑狼疮等与BAFF功能亢进密切相关的自身免疫性疾病的治疗,及相关机制研究提供一种具有诸多优点的新型工具。  相似文献   

2.
根据已报道的草鱼免疫球蛋白IgM、IgZ 和IgD 的序列设计表达引物进行PCR 扩增, 将扩增片段克隆至表达载体pET-32a, 并在大肠杆菌Rosetta-gami (DE3)中进行诱导表达。利用亲和层析法纯化表达的重组蛋白, 然后免疫日本大耳白兔, 获得兔抗IgM、IgZ 和IgD 的抗血清。经免疫印迹检测, 表明IgM、IgZ 和IgD的表达产物能够被兔多克隆抗体特异性识别。应用兔抗草鱼IgM 和IgZ 的多克隆抗体, 对草鱼多种器官、组织提取的总蛋白进行免疫印迹检测, 在肠、头肾、中肾、皮肤、脾脏、脑、鳃和血液中都检测到IgM 和IgZ的表达。    相似文献   

3.
硬骨鱼新型免疫球蛋白的研究进展   总被引:2,自引:0,他引:2  
鱼类是最早出现免疫球蛋白的动物,鱼类免疫球蛋白在鱼类的特异性体液免疫应答中发挥重要的作用。一直以来,人们认为在硬骨鱼中仅存在IgM和IgD两种免疫球蛋白,而2005年以来,陆续在斑马鱼、虹鳟鱼及鲤鱼等硬骨鱼中发现了新型免疫球蛋白,分别命名为IgZ、IgT及IgM-IgZ等。这些新型免疫球蛋白不仅在基因结构上很特别,而且呈现出多样性,在不同种的硬骨鱼中的功能也不完全相同,同一种鱼中的IgT也呈现多样性。虽然目前对于鱼类新型免疫球蛋白的研究刚刚起步,对其功能了解较少,但有研究表明IgT在硬骨鱼的粘膜免疫中发挥重要的作用,且认为它与IgA是同源的。该文拟对硬骨鱼中发现的新型免疫球蛋白的结构特点、基因组成和分布模式及功能差异作一简要综述。  相似文献   

4.
We describe neuronal patterns in the spinal cord of adult zebrafish. We studied the distribution of cells and processes in the three spinal regions reported in the literature: the 8th vertebra used as a transection injury site, the 15th vertebra mainly used for motor cell recordings and also for crush injury, and the 24th vertebra used to record motor nerve activity. We used well‐known transgenic lines in which expression of green fluorescent protein (GFP) is driven by promoters to hb9 and isl1 in motoneurons, alx/chx10 and evx1 interneurons, ngn1 in sensory neurons and olig2 in oligodendrocytes, as well as antibodies for neurons (HuC/D, NF and SV2) and glia (GFAP). In isl1:GFP fish, GFP‐positive processes are retained in the upper part of ventral horns and two subsets of cell bodies are observed. The pattern of the transgene in hb9:GFP adults is more diffuse and fibers are present broadly through the adult spinal cord. In alx/chx10 and evx1 lines we respectively observed two and three different GFP‐positive populations. Finally, the ngn1:GFP transgene identifies dorsal root ganglion and some cells in dorsal horns. Interestingly some GFP positive fibers in ngn1:GFP fish are located around Mauthner axons and their density seems to be related to a rostrocaudal gradient. Many other cell types have been described in embryos and need to be studied in adults. Our findings provide a reference for further studies on spinal cytoarchitecture. Combined with physiological, histological and pathological/traumatic approaches, these studies will help clarify the operation of spinal locomotor circuits of adult zebrafish. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 642–660, 2016  相似文献   

5.
6.
Members of the Rh glycoprotein family have been shown to be involved in ammonia transport in a variety of species. Here we show that zebrafish Rhcg1, a member of the Rh glycoprotein family, is highly expressed in the yolk sac, gill, and renal tubules. Molecular cloning and characterization indicate that zebrafish Rhcg1 shares 82% sequence identity with the pufferfish ortholog fRhcg1. RT-PCR, combined with in situ hybridization, revealed that Rhcg1 is first expressed in vacuolar-type H(+)-ATPase/mitochondrion-rich cells (vH-MRC) on the yolk sac of larvae at 3 days postfertilization (dpf) and later in vH-MRC-like cells in the gill at 4-5 dpf. Ammonia excretion from zebrafish larvae increased in parallel with the expression of Rhcg1. At larval stages, Rhcg1 mRNA was detected only on the yolk sac and gill; however, the kidney, as well as the gill, becomes a major site of Rhcg1 expression in adults. Using a zebrafish Tol2 transgenic line whose vH-MRC are labeled with green fluorescent protein (GFP) and an antibody against zebrafish Rhcg1, we demonstrate that Rhcg1 is located in the apical regions of 1) vH-MRC on the yolk sac and vH-MRC-like cells (cell population with the expression of Rhcg1 and GFP) in the gill and 2) cells in the renal distal tubule and intercalated cell-like cells in the collecting duct of the kidney. Remarkably, expression of Rhcg1 mRNA at the larval stage was changed by environmental ionic strength. These results suggest that roles of zebrafish Rhcg1 are not solely ammonia secretion to eliminate nitrogen from the gill.  相似文献   

7.
An important consideration in transgenic research is the choice of promoter for regulating the expression of a foreign gene. In this study several tissue-specific and inducible promoters derived from Japanese flounder Paralichthys olivaceus were identified, and their promoter activity was examined in transgenic zebrafish. The 5′ flanking regions of the Japanese flounder complement component C3, gelatinase B, keratin, and tumor necrosis factor (TNF) genes were linked to green fluorescence protein (GFP) as a reporter gene. The promoter regulatory constructs were introduced into fertilized zebrafish eggs. As a result we obtained several stable transgenic zebrafish that displayed green fluorescence in different tissues. Complement component C3 promoter regulated GFP expression in liver, and gelatinase B promoter regulated it in the pectoral fin and gills. Keratin promoter regulated GFP expression in skin and liver. TNF gene promoter regulated GFP expression in the pharynx and heart. TNF promoter had lipoplysaccharide-inducible activity, such that when transgenic embryos were immersed lipopolysaccharide, GFP expression increased in the epithelial tissues. These 4 promoters regulated the expression of GFP in different patterns in transgenic zebrafish.  相似文献   

8.
转基因斑马鱼分析胰岛β-细胞发育情况   总被引:1,自引:0,他引:1  
斑马鱼的个体小、高产和体外受精等特点使其已经迅速成为研究脊椎动物器官发育和人类疾病的模式生物之一。我们建立了一个转基因斑马鱼动物模型来研究胰岛β-细胞的发育。首先,构建了斑马鱼胰岛素(Insulin ,INS) 启动子与绿色荧光蛋白(GFP) 组成的表达载体, 命名为INS:GFP。其次,将质粒在斑马鱼1-细胞期注射到细胞质内。最后我们成功获得了生殖系稳定遗传胰岛素转基因斑马鱼,在成鱼和幼鱼期均可以通过GFP标记β-细胞。通过方便的荧光筛选,我们观察到胰岛在受精后18h开始形成,1-5d后由初始的脊索中线两侧向右迁移。从我们构建的胰岛素转基因斑马鱼,可以直观判断胰岛的发育情况,为研究胰岛的发育、损伤和再生提供了一个简便和直观的新型工具。  相似文献   

9.
Her GM  Chiang CC  Chen WY  Wu JL 《FEBS letters》2003,538(1-3):125-133
Mammalian liver fatty acid binding protein (L-FABP) is a small cytosolic protein in various tissues including liver, small intestine and kidney and is thought to play a crucial role in intracellular fatty acid trafficking and metabolism. To better understand its tissue-specific regulation during zebrafish hepatogenesis, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a green fluorescent protein (GFP) transgenic strategy to generate liver-specific transgenic zebrafish. The 2.8-kb 5'-flanking sequence of zebrafish L-FABP gene was sufficient to direct GFP expression in liver primordia, first observed in 2 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. F2 inheritance rates of 42-51% in all the seven transgenic lines were consistent with the ratio of Mendelian segregation. Further, hhex and zXbp-1 morphants displayed a visible liver defect, which suggests that it is possible to establish an in vivo system for screening genes required for liver development.  相似文献   

10.
Conditional expression of a target gene during zebrafish development is a powerful approach to elucidate gene functions. The tetracycline-controlled systems have been successfully used in the modulation of gene expression in mammalian cells, but few lines of zebrafish carrying these systems are currently available. In this study, we had generated a stable transgenic zebrafish line that ubiquitously expressed the second-generation of reverse Tet transactivator (rtTA-M2). Southern blotting analysis and high-throughput genome sequencing verifed that a single copy of rtTA-M2 gene had stably integrated into the zebrafish genome. After induction with doxycycline (Dox), a strong green fluorescent protein (GFP) was seen in rtTA-transgenic eggs injected with pTRE--EGFP plasmids. The fluorescent signal gradually decreased after the withdrawal of Dox and disappeared. However, leaky expression of GFP was undetectable before Dox- induction. Additionally, transgenic embryos expressing rtTA-M2 exhibited no obvious defects in morphological phenotypes, hatching behavior and expression patterns of developmental marker genes, suggesting that rtTA-M2 had little effect on the development of transgenic zebrafish. Moreover, expressed Dickkopf-1 (DKK1) in pTRE-DKKl-injected embryos led to alterations in the expression of marker genes associated with Wnt signaling. Thus, this rtTA-transgenic zebrafish can be utilized to dissect functions of genes in a temporal manner.  相似文献   

11.
To assess alternative methods for introducing expressing transgenes into the germ line of zebrafish, transgenic fish that express a nuclear-targeted, enhanced, green fluorescent protein (eGFP) gene were produced using both pseudotyped retroviral vector infection and DNA microinjection of embryos. Germ-line transgenic founders were identified and the embryonic progeny of these founders were evaluated for the extent and pattern of eGFP expression. To compare the two modes of transgenesis, both vectors used the Xenopus translational elongation factor 1-alpha enhancer/promoter regulatory cassette. Several transgenic founder fish which transferred eGFP expression to their progeny were identified. The gene expression patterns are described and compared for the two modes of gene transfer. Transient expression of eGFP was detected 1 day after introducing the transgenes via either DNA microinjection or retroviral vector infection. In both cases of gene transfer, transgenic females produced eGFP-positive progeny even before the zygotic genome was turned on. Therefore, GFP was being provided by the oocyte before fertilization. A transgenic female revealed eGFP expression in her ovarian follicles. The qualitative patterns of gene expression in the transgenic progeny embryos after zygotic induction of gene expression were similar and independent of the mode of transgenesis. The appearance of newly synthesized GFP is detectable within 5-7 h after fertilization. The variability of the extent of eGFP expression from transgenic founder to transgenic founder was wider for the DNA-injection transgenics than for the retroviral vector-produced transgenics. The ability to provide expressing germ-line transgenic progeny via retroviral vector infection provides both an alternative mode of transgenesis for zebrafish work and a possible means of easily assessing the insertional mutagenesis frequency of retroviral vector infection of zebrafish embryos. However, because of the transfer of GFP from oocyte to embryo, the stability of GFP may create problems of analysis in embryos which develop as quickly as those of zebrafish.  相似文献   

12.
In vertebrates, pigment cells account for a small percentage of the total cell population and they intermingle with other cell types. This makes it difficult to isolate them for analyzes of their functions in the context of development. To alleviate such difficulty, we generated two stable transgenic zebrafish lines (pt101 and pt102) that express green fluorescent protein (GFP) in melanophores under the control of the 1 kb Fugu tyrp1 promoter. In pt101, GFP is expressed in both retinal pigment epithelium (RPE) cells and the neural crest‐derived melanophores (NCDM), whereas in pt102, GFP is predominately expressed in the NCDM. Our results indicate that the Fugu tyrp1 promoter can direct transgene expression in a cell‐type‐specific manner in zebrafish. In addition, our findings provide evidence supporting differential regulations of melanin‐synthesizing genes in RPE cells and the NCDM in zebrafish. Utilizing the varying GFP expression levels in these fish, we have isolated melanophores via flow cytometry and revealed the capability of sorting the NCDM from RPE cells as well. Thus, these transgenic lines are useful tools to study melanophores in zebrafish.  相似文献   

13.
14.
15.
Wang R  Li Z  Wang Y  Gui JF 《PloS one》2011,6(7):e22555
Several transgenic zebrafish lines for liver development studies had been obtained in the first decade of this century, but not any transgenic GFP zebrafish lines that mark the through liver development and organogenesis were reported. In this study, we analyzed expression pattern of endogenous Apo-14 in zebrafish embryogenesis by whole-mount in situ hybridization, and revealed its expression in liver primordium and in the following liver development. Subsequently, we isolated zebrafish Apo-14 promoter of 1763 bp 5'-flanking sequence, and developed an Apo-14 promoter-driven transgenic zebrafish Tg(Apo14: GFP). And, maternal expression and post-fertilization translocation of Apo-14 promoter-driven GFP were observed in the transgenic zebrafish line. Moreover, we traced onset expression of Apo-14 promoter-driven GFP and developmental behavior of the expressed cells in early heterozygous embryos by out-crossing the Tg(Apo14: GFP) male to the wild type female. Significantly, the Apo-14 promoter-driven GFP is initially expressed around YSL beneath the embryo body at 10 hpf when the embryos develop to tail bud prominence. In about 14-somite embryos at 16-17 hpf, a typical "salt-and-pepper" expression pattern is clearly observed in YSL around the yolk sac. Then, a green fluorescence dot begins to appear between the notochord and the yolk sac adjacent to otic vesicle at about 20 hpf, which is later demonstrated to be liver primordium that gives rise to liver. Furthermore, we investigated dynamic progression of liver organogenesis in the Tg(Apo14: GFP) zebrafish, because the Apo-14 promoter-driven GFP is sustainably expressed from hepatoblasts and liver progenitor cells in liver primordium to hepatocytes in the larval and adult liver. Additionally, we observed similar morphology between the liver progenitor cells and the GFP-positive nuclei on the YSL, suggesting that they might originate from the same progenitor cells in early embryos. Overall, the current study provides a transgenic zebrafish line that marks the through liver organogenesis.  相似文献   

16.
Transgenesis using bacterial artificial chromosomes (BAC) offers greater fidelity in directing desirable expression of foreign genes. Application of this technology in the optically transparent zebrafish with fluorescent protein reporters enables unparalleled visual analysis of regulation of gene expression in a living organism. Here we describe a streamlined procedure of direct selecting multiple BAC clones based on public sequence databases followed by rapid modification with GFP or RFP for transgenic analysis in zebrafish. Experimental procedures for BAC DNA preparation, microinjection of zebrafish embryos and screening of transgenic zebrafish carrying GFP/RFP modified BAC clones are detailed.  相似文献   

17.
18.
刘悦  张其中  崔淼 《生态科学》2013,32(2):218-223
采用同源克隆和RACE技术扩增到鲈鱼 (Lateolabrax japonicus) 免疫球蛋白M (Immunoglobulin M,IgM) 重链 (Heavy chain,H) 基因全长cDNA序列。鲈鱼IgM cDNA全长为1 901 bp,开放阅读框包含1 749 bp,编码582个氨基酸。根据鲈鱼IgM和其他硬骨鱼免疫球蛋白重链恒定区的氨基酸序列构建的系统发育树表明IgM、IgZ和IgD分别聚为一枝,其中IgM与IgZ分支的进化关系较近,而与IgD分支的进化关系较远。RT-PCR检测IgM在鲈鱼各组织器官的表达情况,其中在头肾及脾脏中表达量最高,心脏、肌肉及脑中几乎不表达。利用已获得的鲈鱼IgM cDNA序列,构建原核表达载体pQE30-IgM,并在M15大肠杆菌中成功诱导表达了分子量为63kD的重组蛋白His-IgM,Western-blotting显示鲈鱼IgM重组蛋白能与鼠源抗6×His的单克隆抗体特异性结合,说明已经获得了基因工程表达IgM重链蛋白。  相似文献   

19.
20.
The primordial immunoglobulin class, IgD, was the first non‐IgM isotype discovered in teleosts. The crucial roles of IgM and IgZ in imparting systemic and mucosal immunity, respectively, in various fish species have been widely established. However, the putative function of a unique IgD isotype during pathogenic invasions has not been well explored. The present study reports the existence of an IgD ortholog in freshwater carp, Catla catla, and further evaluates its differential expression profile in response to bacterial, parasitic and viral antigenic exposure and pathogen associated molecular patterns (PAMPs) stimulation. The IgD of C. catla (Cc IgD) cDNA sequence was found to encode 226 amino acids and confirmed homology with heavy chain delta region of Cyprinidae family members. Phylogenetic analysis of Cc IgD exhibited greatest similarity with Ctenopharyngodon idella . qRT‐PCR analysis revealed significant upregulation (P < 0.001) of IgD gene expression in kidney with respect to other tissues at 24 hr post‐Aeromonas hydrophila challenge. Cc IgD gene expression in skin was enhanced following Streptococcus uberis infection and in blood following Argulus infection and inactivated rhabdoviral antigen stimulation. Further, the treatment of bacterial and viral products (PAMPs) also triggered significant (P < 0.05) increases in Cc IgD mRNA expression in kidney. These findings indicate the functional importance of teleost IgD in orchestrating tissue specific neutralization of antigens on stimulation with different pathogens and PAMPs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号