首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

2.
To clarify the effects of long-term warming on ecosystem matter cycling, we conducted an in situ 7-year experimental warming (2009–2015) using infrared heaters in a cool temperate semi-natural grassland in Japan. We measured plant aboveground biomass, soil total C and N, soil inorganic N (NH4 +-N and NO3 ?-N), and soil microbial biomass for 7 years (2009–2015). We also measured heterotrophic respiration for 2 years (2013–2014) and assessed net N mineralization and nitrification in 2015. We found that warming immediately increased plant aboveground biomass, but this effect ceased in 2013. However, the soil microbial biomass was continuously depressed by warming. Soil inorganic N concentrations in warmed plots substantially increased in the later years of the experiment (2013–2015) and the potential net N mineralization rate was also higher than in the earlier years. In contrast, heterotrophic respiration decreased with warming in 2013–2014. Our observations indicate that long-term warming has a contrasting effect on plants and soil microbes. In addition, the warming could have different effects on subterranean C and N cycling. To enhance the accuracy of estimation of future climate change, it is essential to continuously observe the warming effects on ecosystems and to focus on the change in subterranean C and N cycling.  相似文献   

3.
Ma LN  Lü XT  Liu Y  Guo JX  Zhang NY  Yang JQ  Wang RZ 《PloS one》2011,6(11):e27645

Background

Both climate warming and atmospheric nitrogen (N) deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.

Methodology/Principal Findings

A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.

Conclusions/Significance

Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.  相似文献   

4.
A large remaining source of uncertainty in global model predictions of future climate is how ecosystem carbon (C) cycle feedbacks to climate change. We conducted a field manipulative experiment of warming and nitrogen (N) addition in a temperate steppe in northern China during two contrasting hydrological growing seasons in 2006 [wet with total precipitation 11.2% above the long‐term mean (348 mm)] and 2007 (dry with total precipitation 46.7% below the long‐term mean). Irrespective of strong intra‐ and interannual variations in ecosystem C fluxes, responses of ecosystem C fluxes to warming and N addition did not change between the two growing seasons, suggesting independence of warming and N responses of net ecosystem C exchange (NEE) upon hydrological variations in the temperate steppe. Warming had no effect on NEE or its two components, gross ecosystem productivity (GEP) and ecosystem respiration (ER), whereas N addition stimulated GEP but did not affect ER, leading to positive responses of NEE. Similar responses of NEE between the two growing seasons were due to changes in both biotic and abiotic factors and their impacts on ER and GEP. In the wet growing season, NEE was positively correlated with soil moisture and forb biomass. Negative effects of warming‐induced water depletion could be ameliorated by higher forb biomass in the warmed plots. N addition increased forb biomass but did not affect soil moisture, leading to positive effect on NEE. In the dry growing season, NEE showed positive dependence on grass biomass but negative dependence on forb biomass. No changes in NEE in response to warming could result from water limitation on both GEP and ER as well as little responses of either grass or forb biomass. N addition stimulated grass biomass but reduced forb biomass, leading to the increase in NEE. Our findings highlight the importance of changes in abiotic (soil moisture, N availability) and biotic (growth of different plant functional types) in mediating the responses of NEE to climatic warming and N enrichment in the semiarid temperate steppe in northern China.  相似文献   

5.
Global surface temperature is predicted to increase by 1.4–5.8°C by the end of this century. However, the impacts of this projected warming on soil C balance and the C budget of terrestrial ecosystems are not clear. One major source of uncertainty stems from warming effects on soil microbes, which exert a dominant influence on the net C balance of terrestrial ecosystems by controlling organic matter decomposition and plant nutrient availability. We, therefore, conducted an experiment in a tallgrass prairie ecosystem at the Great Plain Apiaries (near Norman, OK) to study soil microbial responses to temperature elevation of about 2°C through artificial heating in clipped and unclipped field plots. While warming did not induce significant changes in net N mineralization, soil microbial biomass and respiration rate, it tended to reduce extractable inorganic N during the second and third warming years, likely through increasing plant uptake. In addition, microbial substrate utilization patterns and the profiles of microbial phospholipid fatty acids (PLFAs) showed that warming caused a shift in the soil microbial community structure in unclipped subplots, leading to the relative dominance of fungi as evidenced by the increased ratio of fungal to bacterial PLFAs. However, no warming effect on soil microbial community structure was found in clipped subplots where a similar scale of temperature increase occurred. Clipping also significantly reduced soil microbial biomass and respiration rate in both warmed and unwarmed plots. These results indicated that warming‐led enhancement of plant growth rather than the temperature increase itself may primarily regulate soil microbial response. Our observations show that warming may increase the relative contribution of fungi to the soil microbial community, suggesting that shifts in the microbial community structure may constitute a major mechanism underlying warming acclimatization of soil respiration.  相似文献   

6.
Predicted changes in climate may affect key soil processes such as respiration and net nitrogen (N) mineralization and thus key ecosystem functions such as carbon (C) storage and nutrient availability. To identify the sensitivity of shrubland soils to predicted climate changes, we have carried out experimental manipulations involving ecosystem warming and prolonged summer drought in ericaceous shrublands across a European climate gradient. We used retractable covers to create artificial nighttime warming and prolonged summer drought to 20-m2 experimental plots. Combining the data from across the environmental gradient with the results from the manipulation experiments provides evidence for strong climate controls on soil respiration, net N mineralization and nitrification, and litter decomposition. Trends of 0%–19% increases of soil respiration in response to warming and decreases of 3%–29% in response to drought were observed. Across the environmental gradient and below soil temperatures of 20°C at a depth of 5–10 cm, a mean Q10 of 4.1 in respiration rates was observed although this varied from 2.4 to 7.0 between sites. Highest Q10 values were observed in Spain and the UK and were therefore not correlated with soil temperature. A trend of increased accumulated surface litter mass loss was observed with experimental warming (2%– 22%) but there was no consistent response to experimental drought. In contrast to soil respiration and decomposition, variability in net N mineralization was best explained by soil moisture rather than temperature. When water was neither limiting or in excess, a Q10 of 1.5 was observed for net N mineralization rates. These data suggest that key soil processes will be differentially affected by predicted changes in rainfall pattern and temperature and the net effect on ecosystem functioning will be difficult to predict without a greater understanding of the controls underlying the sensitivity of soils to climate variables.  相似文献   

7.
Climate change can profoundly impact carbon (C) cycling of terrestrial ecosystems. A field experiment was conducted to examine responses of total soil and microbial respiration, and microbial biomass to experimental warming and increased precipitation in a semiarid temperate steppe in northern China since April 2005. We measured soil respiration twice a month over the growing seasons, soil microbial biomass C (MBC) and N (MBN), microbial respiration (MR) once a year in the middle growing season from 2005 to 2007. The results showed that interannual variations in soil respiration, MR, and microbial biomass were positively related to interannual fluctuations in precipitation. Laboratory incubation with a soil moisture gradient revealed a constraint of the temperature responses of MR by low soil moisture contents. Across the 3 years, experimental warming decreased soil moisture, and consequently caused significant reductions in total and microbial respiration, and microbial biomass, suggesting stronger negatively indirect effects through warming‐induced water stress than the positively direct effects of elevated temperature. Increased evapotranspiration under experimental warming could have reduced soil water availability below a stress threshold, thus leading to suppression of plant growth, root and microbial activities. Increased precipitation significantly stimulated total soil and microbial respiration and all other microbial parameters and the positive precipitation effects increased over time. Our results suggest that soil water availability is more important than temperature in regulating soil and microbial respiratory processes, microbial biomass and their responses to climate change in the semiarid temperate steppe. Experimental warming caused greater reductions in soil respiration than in gross ecosystem productivity (GEP). In contrast, increased precipitation stimulated GEP more than soil respiration. Our observations suggest that climate warming may cause net C losses, whereas increased precipitation may lead to net C gains in the semiarid temperate steppe. Our findings highlight that unless there is concurrent increase in precipitation, the temperate steppe in the arid and semiarid regions of northern China may act as a net C source under climate warming.  相似文献   

8.
In many terrestrial ecosystems nitrogen (N) limits productivity and plant community composition is influenced by N availability. However, vegetation is not only controlled by N; plant species may influence ecosystem N dynamics through positive or negative effects on N cycling. We examined four potential mechanisms of plant species effects on nitrogen (N) cycling. We found no species differences in gross ammonification suggesting there are no changes in the ecosystem N cycling rate between the soil organic matter pool (SOM) and the plant/microbial pool. We also found weak differences among plant species in gross nitrification, thus plant species only marginally change the relative sizes of the NH4+ and NO3? pools. Next, more than 90% of mineralized N was microbially immobilized, and microbial N immobilization was positively correlated with root biomass. Finally, while species differed in extractable soil NO3? concentration, these differences were not related to root biomass suggesting that microbial immobilization drives net N mineralization and soil NO3? levels. Our results indicate that plant species do not cause feedbacks on the N cycling rate among the three major ecosystem N pools over nine years. However, plant carbon (C) inputs to the soil control microbial N immobilization and thereby change N partitioning between the plant and microbial N pools. Furthermore our results suggest that the SOM pool can act as a strong bottleneck for N cycling in these systems.  相似文献   

9.
Plant species effects on ecosystem processes are mediated by traits such as litter quality and exudation. These same traits also influence the activity and distribution of animals that play key roles in regulating ecosystem dynamics. We planted monocultures of eight plant species commonly found in California grasslands to investigate the relative importance of plant species direct effects on nitrogen cycling, versus their indirect effects mediated by plant interactions with gophers. Plant species differed in their litter C:N ratio, which closely related to species effects on rates of net mineralization and nitrification in undisturbed soil. However, the effect of selective gopher disturbance on N cycling greatly altered these species effects.
Plant species differed in their effects on the type and timing of gopher disturbance. Small feeding holes were formed in late spring in plots containing species with high tissue quality. These feeding holes minimally disturbed the soil and did not alter N cycling rates over the short term. Large gopher mounds were formed in the winter and early spring, primarily in plots containing the grass, Aegilops triuncialis , and to a lesser extent in plots containing Avena barbata . These large mounds significantly disturbed the soil and greatly increased net nitrification rates, but had no consistent effects on net N mineralization. In undisturbed soil, Aegilops had the highest litter C:N ratio and one of the lowest rates of net nitrification. However, gophers preferentially built large mounds in Aegilops plots. Once the effects of gopher burrowing were considered, Aegilops had one of the highest rates of net nitrification, indicating that the indirect effects of plant species on N cycling can be more important than the direct effects alone. This experiment indicates that it is vital to consider interactions between plants and other organisms in order to predict the ecosystem effects of plant communities.  相似文献   

10.
Belowground plant responses have received much less attention in climate change experiments than aboveground plant responses, thus hampering a holistic understanding of climate change effects on plants and ecosystems. In addition, responses of plant roots to climate change have mostly been studied in single-factor experiments. In a Danish heathland ecosystem, we investigated both individual and combined effects of elevated CO2, warming and drought on fine root length, net production and standing biomass by the use of minirhizotrons, ingrowth cores and soil coring. Warming increased the net root production from ingrowth cores, but decreased fine root number and length in minirhizotrons, whereas there were no significant main effects of drought. Across all treatments and soil depths, CO2 stimulated both the total fine root length (+44%) and the number of roots observed (+39%), with highest relative increase in root length in the deeper soil layers. Our results suggest that under future climate, plants may allocate considerable resources into roots compared to aboveground biomass. Increased carbon (C) allocation to roots may have a great impact on the overall ecosystem C balance and must be considered in modelling of future ecosystem responses to climate change. To provide models with necessary validation data, more studies are needed to investigate if higher C allocation to roots will lead to long-term C storage in more recalcitrant soil C pools or if this potential increase in soil carbon storage may be offset by increased priming activity and turnover rates for soil organic matter.  相似文献   

11.
Feedback between global carbon (C) cycles and climate change is one of the major uncertainties in projecting future global warming. Coupled carbon–climate models all demonstrated a positive feedback between terrestrial C cycle and climate warming. The positive feedback results from decreased net primary production (NPP) in most models and increased respiratory C release by all the models under climate warming. Those modeling results present interesting hypotheses of future states of ecosystems and climate, which are yet to be tested against experimental results. In this study, we examined ecosystem C balance and its major components in a warming and clipping experiment in a North America tallgrass prairie. Infrared heaters have been used to elevate soil temperature by approximately 2 °C continuously since November 1999. Clipping once a year was to mimic hay or biofuel feedstock harvest. On average of data over 6 years from 2000 to 2005, estimated NPP under warming increased by 14% without clipping (P<0.05) and 26% with clipping (P<0.05) in comparison with that under control. Warming did not result in instantaneous increases in soil respiration in 1999 and 2000 but significantly increased it by approximately 8% without clipping (P<0.05) from 2001 to 2005. Soil respiration under warming increased by 15% with clipping (P<0.05) from 2000 to 2005. Warming‐stimulated plant biomass production, due to enhanced C4 dominance, extended growing seasons, and increased nitrogen uptake and use efficiency, offset increased soil respiration, leading to no change in soil C storage at our site. However, biofuel feedstock harvest by biomass removal resulted in significant soil C loss in the clipping and control plots but was carbon negative in the clipping and warming plots largely because of positive interactions of warming and clipping in stimulating root growth. Our results demonstrate that plant production processes play a critical role in regulation of ecosystem carbon‐cycle feedback to climate change in both the current ambient and future warmed world.  相似文献   

12.
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long‐term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming‐induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming‐induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0–30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning.  相似文献   

13.
Aims Land use management affects plant carbon (C) supply and soil environments and hence alters soil nitrogen (N) dynamics, with consequent feedbacks to terrestrial ecosystem productivity. The objective of this study was to better identify mechanisms by which land-use management (clipping and shading) regulates soil N in a tallgrass prairie, OK, USA.Methods We conducted 1-year clipping and shading experiment to investigate the effects of changes in land-use management (soil microclimates, plant C substrate supply and microbial activity) on soil inorganic N (NH 4 + ? N and NO 3 ? ? N), net N mineralization and nitrification in a tallgrass prairie.Important findings Land-use management through clipping and/or shading significantly increased annual mean inorganic N, possibly due to lowered plant N uptake and decreased microbial N immobilization into biomass growth. Shading significantly increased annual mean mineralization rates (P < 0.05). Clipping slightly decreased annual mean N nitrification rates whereas shading significantly increased annual mean N nitrification rates. Soil microclimate significantly explained 36% of the variation in NO 3 ? ? N concentrations (P = 0.004). However, soil respiration, a predictor of plant C substrate supply and microbial activity, was negatively correlated with NH 4 + ? N concentrations (P = 0.0009), net N mineralization (P = 0.0037) and nitrification rates (P = 0.0028) across treatments. Our results suggest that change in C substrate supply and microbial activity under clipping and/or shading is a critical control on NH 4 + ? N, net N mineralization and nitrification rates, whereas clipping and shading-induced soil microclimate change can be important for NO 3 ? ? N variation in the tallgrass prairie.  相似文献   

14.
Global climate warming may induce a positive feedback through increasing soil carbon (C) release to the atmosphere. Although warming can affect both C input to and output from soil, direct and convincing evidence illustrating that warming induces a net change in soil C is still lacking. We synthesized the results from field warming experiments at 165 sites across the globe and found that climate warming had no significant effect on soil C stock. On average, warming significantly increased root biomass and soil respiration, but warming effects on root biomass and soil respiration strongly depended on soil nitrogen (N) availability. Under high N availability (soil C:N ratio < 15), warming had no significant effect on root biomass, but promoted the coupling between effect sizes of root biomass and soil C stock. Under relative N limitation (soil C:N ratio > 15), warming significantly enhanced root biomass. However, the enhancement of root biomass did not induce a corresponding C accumulation in soil, possibly because warming promoted microbial CO2 release that offset the increased root C input. Also, reactive N input alleviated warming-induced C loss from soil, but elevated atmospheric CO2 or precipitation increase/reduction did not. Together, our findings indicate that the relative availability of soil C to N (i.e., soil C:N ratio) critically mediates warming effects on soil C dynamics, suggesting that its incorporation into C-climate models may improve the prediction of soil C cycling under future global warming scenarios.  相似文献   

15.
Global climate change is expected to result in a greater frequency of extreme weather, which can cause lag effects on aboveground net primary production (ANPP). However, our understanding of lag effects is limited. To explore lag effects following extreme weather, we applied four treatments (control, doubled precipitation, 4 °C warming, and warming plus doubled precipitation) for 1 year in a randomized block design and monitored changes in ecosystem processes for 3 years in an old‐field tallgrass prairie in central Oklahoma. Biomass was estimated twice in the pretreatment year, and three times during the treatment and posttreatment years. Total plant biomass was increased by warming in spring of the treatment year and by doubled precipitation in summer. However, double precipitation suppressed fall production. During the following spring, biomass production was significantly suppressed in the formerly warmed plots 2 months after treatments ceased. Nine months after the end of treatments, fall production remained suppressed in double precipitation and warming plus double precipitation treatments. Also, the formerly warmed plots still had a significantly greater proportion of C4 plants, while the warmed plus double precipitation plots retained a high proportion of C3 plants. The lag effects of warming on biomass did not match the temporal patterns of soil nitrogen availability determined by plant root simulator probes, but coincided with warming‐induced decreases in available soil moisture in the deepest layers of soil which recovered to the pretreatment pattern approximately 10 months after the treatments ceased. Analyzing the data with an ecosystem model showed that the lagged temporal patterns of effects of warming and precipitation on biomass can be fully explained by warming‐induced differences in soil moisture. Thus, both the experimental results and modeling analysis indicate that water availability regulates lag effects of warming on biomass production.  相似文献   

16.
Fire is a fundamental reorganizing force in chaparral and other Mediterranean-type ecosystems. Postfire nutrient redistribution and cycling are frequently invoked as drivers of ecosystem recovery. The extent to which N is transported from slopes to streams following fire is a function of the balance between the rate at which soil microbes retain and metabolize N into forms that readily dissolve or leach, and how rapidly recovering plants sequester this mobilized N. To better understand how fire impacts this balance, we sampled soil and plant N dynamics in 17 plots distributed across two burned, chaparral-dominated watersheds in Santa Barbara County, California. We measured a variety of ecosystem properties in both burned and unburned plots on a periodic basis for 2 years, including soil water content, pH, soil and plant carbon and nitrogen, extractable inorganic nitrogen, dissolved organic nitrogen, and microbial biomass. In burned plots, nitrification was significantly enhanced relative to rates measured in unburned plots. Ephemeral herbs established quickly following the first postfire rain events. Aboveground plant biomass assimilated N commensurate with soil net mineralization, implying tight N cycling during the early stages of recovery. Microbial biomass N, on the other hand, remained low throughout the study. These findings highlight the importance of herbaceous species in conserving ecosystem nutrients as shrubs gradually recover.  相似文献   

17.
M. Thum 《Oecologia》1986,68(4):601-605
Summary Labelled nitrogen was used to evaluate the effects of intensive forest management on soil nitrogen transformations. The total release of N into inorganic forms (ammonium plus nitrate) was much greater than net N mineralization in all treatments. Immobilization of N by microbes was greatest in minimally-treated harvested plots, while the turnover of N within soil microbes was greatest in intensively-treated plots. Ammonium was immobilized 2.4–3.2 times more rapidly than nitrate in havested plots; nitrification in disturbed sites could thus increase the availability of N to regrowing vegetation.  相似文献   

18.
In situ nitrogen (N) transformations and N availability were examined over a four‐year period in two soil microclimates (xeric and mesic) under a climate‐warming treatment in a subalpine meadow/sagebrush scrub ecotone. Experimental plots that spanned the two soil microclimates were exposed to an in situ infrared (IR) climate change manipulation at the Rocky Mountain Biological Laboratory, near Crested Butte, Colorado. Although the two microclimates did not differ significantly in their rates of N transformations in the absence of heating, they differed significantly in their response to increased IR. Under a simulated warming in the sagebrush‐dominated xeric microclimate, gross N mineralization rates doubled and immobilization rates increased by up to 60% over the first 2 years of the study but declined to predisturbance rates by the fourth year. This temporal pattern of gross mineralization rates correlated with a decline in SOM. Concurrently, rates of net mineralization rates in the heated plots were 60% higher than the controls after the first year. There were no differences in gross or net nitrification rates with heating in the xeric soils. In contrast to the xeric microclimate, there were no significant effects of heating on any N transformation rates in the mesic microclimate. The differing responses in N cycling rates of the two microclimate to the increased IR is most certainly the result of differences in initial soil moisture conditions and vegetation type and cover.  相似文献   

19.
刘美  马志良 《应用生态学报》2021,32(6):2045-2052
本文研究了青藏高原东部窄叶鲜卑花高寒灌丛生长季前期、生长季后期和非生长季3个生育期的土壤氮转化速率对模拟增温的响应,分析全球气候变暖对高寒灌丛土壤氮循环过程的影响。结果表明: 模拟增温使高寒灌丛土壤温度显著升高1.2 ℃,土壤水分显著降低2.5%。高寒灌丛生长季土壤净氮矿化(氨化和硝化)速率显著高于非生长季,但土壤净氮固持速率显著低于非生长季。土壤氮矿化在生长季前期以硝化作用为主,在生长季后期和非生长季以氨化作用为主。模拟增温对高寒灌丛土壤氮转化过程的影响在不同时期存在显著差异。模拟增温显著增加了生长季前期土壤净氨化、净硝化、净氮矿化、净氮固持速率和非生长季土壤净硝化、净氮矿化速率,并显著降低了生长季后期土壤净硝化、净氮矿化、净氮固持速率和非生长季土壤净氨化速率。但模拟增温对高寒灌丛非生长季净氮固持速率和生长季后期净硝化速率的影响不显著。未来气候变暖将显著改变青藏高原东部高寒灌丛土壤氮转化,进而加速高寒灌丛土壤氮循环过程。  相似文献   

20.
Rapid temperature and precipitation changes in High Arctic tundra ecosystems are altering the biogeochemical cycles of carbon (C) and nitrogen (N), but in ways that are difficult to predict. The challenge grows from the uncertainty of N cycle responses and the extent to which shifts in soil N are coupled with the C cycle and productivity of tundra systems. We used a long‐term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland, and applied a combination of discrete sampling and in situ soil core incubations to measure C and N pools and seasonal microbial processes that might control plant‐available N. We hypothesized that elevated temperature and increased precipitation would stimulate microbial activity and net inorganic N mineralization, thereby increasing plant N‐availability through the growing season. While we did find increased N mineralization rates under both global change scenarios, water addition also significantly increased net nitrification rates, loss of NO3?‐N via leaching, and lowered rates of labile organic N production. We also expected the chronic warming and watering would lead to long‐term changes in soil N‐cycling that would be reflected in soil δ15N values. We found that soil δ15N decreased under the different climate change scenarios. Our results suggest that temperature accelerates biological processes and existing C and N transformations, but moisture increases soil hydraulic connectivity and so alters the pathways, and changes the fate of the products of C and N transformations. In addition, our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these landscapes in part leading to greater C sequestration, but simultaneously, N losses from the upper soil profile that may be transported to depth dissolved in water and or transported off site in lateral flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号