首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sindbis virus induces apoptotic cell death in cultured cell lines, raising the possibility that apoptosis of infected neurons and other target cells in vivo may contribute to the resulting disease and mortality. To investigate the role of apoptosis in Sindbis virus pathogenesis, infected mouse brains were assayed by the in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling technique and for DNA ladder formation. Infection with recombinant Sindbis virus strain 633 resulted in widespread apoptosis in newborn mouse brains and spinal cords, but few apoptotic cells were observed following infection of 2-week-old animals. This finding correlates with the age-dependent mortality observed in mice. The more neurovirulent virus TE, which differs from 633 by a single amino acid in the E2 glycoprotein, induced significant apoptosis in brains and spinal cords of 2-week-old animals, consistent with its ability to cause fatal disease in older animals. Double-labeling experiments demonstrated that the apoptotic cells were also infected with Sindbis virus. Thus, Sindbis virus-induced apoptosis appears to be a result of virus infection and is likely to reflect pathogenic mechanisms for other viruses.  相似文献   

2.
Infection of adult mice with neuroadapted Sindbis virus (NSV) results in a severe encephalomyelitis accompanied by prominent hindlimb paralysis. We find that the onset of paralysis parallels morphologic changes in motor neuron cell bodies in the lumbar spinal cord and in motor neuron axons in ventral nerve roots, many of which are eventually lost over time. However, unlike NSV-induced neuronal cell death found in the brain of infected animals, the loss of motor neurons does not appear to be apoptotic, as judged by morphologic and biochemical criteria. This may be explained in part by the lack of detectable caspase-3 expression in these cells.  相似文献   

3.
Prostate apoptosis response-4 (Par-4), a protein containing a leucine zipper domain within a death domain, is up-regulated in prostate cancer cells and hippocampal neurons induced to undergo apoptosis. Here, we report higher Par-4 levels in lumbar spinal cord samples from patients with amyotrophic lateral sclerosis (ALS) than in lumbar spinal cord samples from neurologically normal patients. We also compared the levels of Par-4 in lumbar spinal cord samples from wild-type and transgenic mice expressing the human Cu/Zn-superoxide dismutase gene with a familial ALS mutation. Relative to control samples, higher Par-4 levels were observed in lumbar spinal cord samples prepared from the transgenic mice at a time when they had hind-limb paralysis. Immunohistochemical analyses of human and mouse lumbar spinal cord sections revealed that Par-4 is localized to motor neurons in the ventral horn region. In culture studies, exposure of primary mouse spinal cord motor neurons or NSC-19 motor neuron cells to oxidative insults resulted in a rapid and large increase in Par-4 levels that preceded apoptosis. Pretreatment of the motor neuron cells with a Par-4 antisense oligonucleotide prevented oxidative stress-induced apoptosis and reversed oxidative stress-induced mitochondrial dysfunction that preceded apoptosis. Collectively, these data suggest a role for Par-4 in models of motor neuron injury relevant to ALS.  相似文献   

4.
Neuroadapted Sindbis virus (NSV), given intranasally, caused fatal encephalitis in 100% of adult C57BL/6 mice and 0% of BALB/cBy mice. Most C57BL/6 mice developed severe kyphoscoliosis followed by hind-limb paralysis, while BALB/cBy mice did not. In situ hybridization for detecting NSV RNA and immunohistochemistry for detecting NSV antigen indicated that virus delivered by this route infected neurons of the olfactory region and spread caudally without infection of ependymal cells. Virus antigen was more abundant and infectious virus increased more rapidly and reached higher levels in C57BL/6 mice than in BALB/cBy mice. Surprisingly, infectious virus was cleared faster in C57BL/6 mice, and this was associated with more rapid production of neutralizing antibody. However, viral RNA was cleared more slowly in C57BL/6 mice. In both mouse strains, more infectious virus was present in the lumbar spinal cord than in the cervical spinal cord. These data suggest that genetic susceptibility to fatal NSV encephalomyelitis is determined at least in part by the efficiency of viral replication and spread in the central nervous system. The differences identified in this study provide possible phenotypes for mapping genetic loci involved in susceptibility.  相似文献   

5.
Under natural conditions and in some experimental models, rabies virus infection of the central nervous system causes relatively mild histopathological changes, without prominent evidence of neuronal death despite its lethality. In this study, the effects of rabies virus infection on the structure of neurons were investigated with experimentally infected transgenic mice expressing yellow fluorescent protein (YFP) in neuronal subpopulations. Six-week-old mice were inoculated in the hind-limb footpad with the CVS strain of fixed virus or were mock infected with vehicle (phosphate-buffered saline). Brain regions were subsequently examined by light, epifluorescent, and electron microscopy. In moribund CVS-infected mice, histopathological changes were minimal in paraffin-embedded tissue sections, although mild inflammatory changes were present. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling and caspase-3 immunostaining showed only a few apoptotic cells in the cerebral cortex and hippocampus. Silver staining demonstrated the preservation of cytoskeletal integrity in the cerebral cortex. However, fluorescence microscopy revealed marked beading and fragmentation of the dendrites and axons of layer V pyramidal neurons in the cerebral cortex, cerebellar mossy fibers, and axons in brainstem tracts. At an earlier time point, when mice displayed hind-limb paralysis, beading was observed in a few axons in the cerebellar commissure. Toluidine blue-stained resin-embedded sections from moribund YFP-expressing animals revealed vacuoles within the perikarya and proximal dendrites of pyramidal neurons in the cerebral cortex and hippocampus. These vacuoles corresponded with swollen mitochondria under electron microscopy. Vacuolation was also observed ultrastructurally in axons and in presynaptic nerve endings. We conclude that the observed structural changes are sufficient to explain the severe clinical disease with a fatal outcome in this experimental model of rabies.  相似文献   

6.
Objective: Cancer of the spinal cord is highly malignant and often leads to paralysis and death. A realistic mouse model would be an important benefit for the better understanding and treatment of spinal cord glioma.
Materials and methods: To develop an imageable, patient-like model of this disease, U87 human glioma tumour fragments (expressing red fluorescent protein), were transplanted by surgical orthotopic implantation into the spinal cord of nontransgenic nude mice or transgenic nude mice expressing nestin-driven green fluorescent protein (ND-GFP). In ND-GFP mice, GFP is expressed in nascent blood vessels and neural stem cells. The animals were treated with temozolomide or vehicle control.
Results: The intramedullary spinal cord tumour grew at the primary site, caused hind-limb paralysis and also metastasized to the brain. Temozolomide inhibited tumour growth ( P  < 0.01) and prevented metastasis, as well as prevented paralysis in four mice and delayed paralysis in two mice of the six tested ( P  = 0.005). In the ND-GFP-expressing host, ND-GFP cells staining positively for neuronal class III-β-tubulin or CD31, surrounded the tumour. These results suggest that the tumour stimulated both neurogenesis and angiogenesis, respectively.
Conclusion: A patient-like model of spinal cord glioma was thus developed, which can be used for the discovery of new agents, including those that inhibit invasion and metastasis of the disease as well as those that prevent paralysis.  相似文献   

7.
Two pairs of Sindbis virus (SV) variants that differ in their neuroinvasive and neurovirulent traits in mice have been isolated. Recently, we mapped the genetic determinants responsible for neuroinvasiveness in weanling mice. Here, we extend this study to newborn and adult rats and to rat neuronal cultures. Remarkably, certain aspects of the pathogenesis of these strains in rats were found to be quite distinct from the mouse model. Suckling rats were susceptible to all four isolates, and replication in the brain was observed after both intraperitoneal and intracranial (i.c.) inoculation. None of the isolates was neuroinvasive in adult rats, although all replicated after i.c. inoculation. For the isolate pair that was highly neurovirulent in mice, SVN and SVNI, only SVNI caused death after i.c. inoculation of adult rats. Similarly, only SVNI was cytotoxic for primary cultures of mature neurons. The genetic determinants responsible for the pathogenic properties of SVNI were mapped to the E2 glycoprotein and the 5' noncoding region (5'NCR). Substitution of two amino acids in SVN E2 with the corresponding residues of SVNI (Met-190 and Lys-260) led to paralysis in 3- and 5-week-old rats. More dramatically, a single substitution in the 5'NCR of SVN (G at position 8) transformed the virus into a lethal pathogen for 3-week-old rats like SVNI. In 5-week-old rats, however, this recombinant was attenuated relative to SVNI by 2 orders of magnitude. Combination of the E2 and 5'NCR determinants resulted in a recombinant with virulence properties indistinguishable from those of SVNI. These data indicate that the 5'NCR and E2 play an instrumental role in determining the age-dependent pathogenic properties of SV in rats.  相似文献   

8.
Astrocytes remove glutamate from the synaptic cleft via specific transporters, and impaired glutamate reuptake may promote excitotoxic neuronal injury. In a model of viral encephalomyelitis caused by neuroadapted Sindbis virus (NSV), mice develop acute paralysis and spinal motor neuron degeneration inhibited by the AMPA receptor antagonist, NBQX. To investigate disrupted glutamate homeostasis in the spinal cord, expression of the main astroglial glutamate transporter, GLT-1, was examined. GLT-1 levels declined in the spinal cord during acute infection while GFAP expression was preserved. There was simultaneous production of inflammatory cytokines at this site, and susceptible animals treated with drugs that blocked IL-1β release also limited paralysis and prevented the loss of GLT-1 expression. Conversely, infection of resistant mice that develop mild paralysis following NSV challenge showed higher baseline GLT-1 levels as well as lower production of IL-1β and relatively preserved GLT-1 expression in the spinal cord compared to susceptible hosts. Finally, spinal cord GLT-1 expression was largely maintained following infection of IL-1β-deficient animals. Together, these data show that IL-1β inhibits astrocyte glutamate transport in the spinal cord during viral encephalomyelitis. They provide one of the strongest in vivo links between innate immune responses and the development of excitotoxicity demonstrated to date.  相似文献   

9.
10.
Apoptosis mediated by the proapoptotic BCL-2 family members BCL-2-associated X-protein (BAX) and BCL-2 antagonist/killer (BAK) is part of the antiviral response at the cellular level to limit virus replication. Viruses, in turn, have evolved to encode antiapoptotic BCL-2 homologs (v-BCL-2s) to prevent the premature death of the infected host cell to sustain virus replication. These same v-BCL-2 proteins cooperate with loss of retinoblastoma protein and p53 tumor suppressor function, by inactivating the BAX and BAK apoptotic pathway to promote epithelial solid tumor growth and resistance to chemotherapy. Analogously to infected cells, failure of apoptosis in tumors permits the survival of abnormal, damaged cells displaying chromosome instability that may further promote tumor progression. Thus, both infected cells and tumor cells require inhibition of the apoptotic host defense mechanism, the insights from which can be exploited for therapy development.  相似文献   

11.
Nude (nu/nu) mice bearing human tumour heterografts were affected with posterior paralysis and wasting. There was demyelination and infection of the oligodendrocytes of the spinal cord with a papovavirus. Similar virus particles and inclusion bodies were found in the bronchial epithelium, which showed histopathological changes. Similar changes were shown by the epithelia of the renal pelvis, ureter and choroid plexus. The virus was found in a transplantable human tumour, and evidence of spread by contact was also obtained. Intracerebral injection of spinal cord suspension from infected mice resulted in virus infected cutaneous carcinomata, demyelination with virus particles in the oligodendrocytes and posterior paralysis with wasting in adult nude mice. The suspension injected intraperitoneally into newborn Syrian hamsters produced tumours similar to those produced by murine polyoma. No evidence of infection was found in mice from the colony of origin. The virus was identified as murine polyoma Wild Type A2.  相似文献   

12.
BAK is a pro-apoptotic BCL-2 family protein that localizes to mitochondria. Here we evaluate the function of BAK in several mouse models of neuronal injury including neuronotropic Sindbis virus infection, Parkinson's disease, ischemia/stroke, and seizure. BAK promotes or inhibits neuronal death depending on the specific death stimulus, neuron subtype, and stage of postnatal development. BAK protects neurons from excitotoxicity and virus infection in the hippocampus. As mice mature, BAK is converted from anti- to pro-death function in virus-infected spinal cord neurons. In addition to regulating cell death, BAK also protects mice from kainate-induced seizures, suggesting a possible role in regulating synaptic activity. BAK can alter neurotransmitter release in a direction consistent with its protective effects on neurons and mice. These findings suggest that BAK inhibits cell death by modifying neuronal excitability.  相似文献   

13.
Virus infection of neurons leads to different outcomes ranging from latent and noncytolytic infection to cell death. Viruses kill neurons directly by inducing either apoptosis or necrosis or indirectly as a result of the host immune response. Sindbis virus (SV) is an alphavirus that induces apoptotic cell death both in vitro and in vivo. However, apoptotic changes are not always evident in neurons induced to die by alphavirus infection. Time lapse imaging revealed that SV-infected primary cortical neurons exhibited both apoptotic and necrotic morphological features and that uninfected neurons in the cultures also died. Antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors protected neurons from SV-induced death without affecting virus replication or SV-induced apoptotic cell death. These results provide evidence that SV infection activates neurotoxic pathways that result in aberrant NMDA receptor stimulation and damage to infected and uninfected neurons.  相似文献   

14.
目的检测Actin binding Rho activator(ABRA)在不同年龄大鼠腰段脊髓中的表达变化。方法采用Western blot定量检测不同年龄大鼠腰段脊髓中ABRA蛋白水平表达变化,采用免疫荧光染色显示不同年龄大鼠腰髓中ABRA细胞定位。结果Western blot显示ABRA在新生鼠腰段脊髓中表达显著高于成年鼠及老年鼠。免疫荧光染色显示ABRA广泛表达于神经元的胞核、胞浆和突起,在腰髓前角,与前角运动神经元存在共定位,在腰髓后角,与小的NeuN阳性感觉神经元存在共定位。腰髓前角、后角的阳性细胞计数均显示新生鼠ABRA+NeuN双阳性细胞占总ABRA阳性细胞百分比显著低于成年鼠及老年鼠。结论ABRA广泛表达于腰髓中的神经元,ABRA在新生鼠腰髓中表达最强,随年龄的增长呈现明显的时相变化,提示ABRA可能参与了腰髓中神经元的发育和成熟。  相似文献   

15.
The BCL-2 family member BAX plays a critical role in regulating apoptosis. Surprisingly, bax-deficient mice display limited phenotypic abnormalities. Here we investigate the effect of BAX on infection by the sexually transmitted pathogen, Chlamydia muridarum (the mouse pneumonitis strain of Chlamydia trachomatis). Bax(-/-) cells are relatively resistant to Chlamydia-induced apoptosis, and fewer bacteria are recovered after two infection cycles from Bax(-/-) cells than from wild-type cells. These results suggest that BAX-dependent apoptosis may be used to initiate a new round of infection, most likely by releasing Chlamydia-containing apoptotic bodies from infected cells that could be internalized by neighboring uninfected cells. Nonetheless, infected Bax(-/-) cells die through necrosis, which is normally associated with inflammation, more often than infected wild-type cells. These studies were confirmed in mice infected intravaginally with C. muridarum; since the infection disappears more quickly from Bax(-/-) mice than from wild-type mice, secretion of proinflammatory cytokines is increased in Bax(-/-) mice, and large granulomas are present in the genital tract of Bax(-/-) mice. Taken together, these data suggest that chlamydia-induced apoptosis via BAX contributes to bacterial propagation and decreases inflammation. Bax deficiency results in lower infection and an increased inflammatory cytokine response associated with more severe pathology.  相似文献   

16.
We evaluated the role of gamma interferon (IFN-gamma) in protecting neurons from virus-induced injury following central nervous system infection. IFN-gamma(-/-) and IFN-gamma(+/+) mice of the resistant major histocompatibility complex (MHC) H-2(b) haplotype and intracerebrally infected with Theiler's murine encephalomyelitis virus (TMEV) cleared virus infection from anterior horn cell neurons. IFN-gamma(+/+) H-2(b) mice also cleared virus from the spinal cord white matter, whereas IFN-gamma(-/-) H-2(b) mice developed viral persistence in glial cells of the white matter and exhibited associated spinal cord demyelination. In contrast, infection of IFN-gamma(-/-) mice of the susceptible H-2(q) haplotype resulted in frequent deaths and severe neurologic deficits within 16 days of infection compared to the results obtained for controls. Morphologic analysis demonstrated severe injury to spinal cord neurons in IFN-gamma(-/-) H-2(q) mice during early infection. More virus RNA was detected in the brain and spinal cord of IFN-gamma(-/-) H-2(q) mice than in those of control mice at 14 and 21 days after TMEV infection. Virus antigen was localized predominantly to anterior horn cells in infected IFN-gamma(-/-) H-2(q) mice. IFN-gamma deletion did not affect the humoral response directed against the virus. However, the level of expression of CD4, CD8, class I MHC, or class II MHC in the central nervous system of IFN-gamma(-/-) H-2(q) mice was lower than those in IFN-gamma(+/+) H-2(q) mice. Finally, in vitro analysis of virus-induced death in NSC34 cells and spinal motor neurons showed that IFN-gamma exerted a neuroprotective effect in the absence of other aspects of the immune response. These data support the hypothesis that IFN-gamma plays a critical role in protecting spinal cord neurons from persistent infection and death.  相似文献   

17.
Apoptosis has been suggested as a mechanism by which dengue (DEN) virus infection may cause neuronal cell death (P. Desprès, M. Flamand, P.-E. Ceccaldi, and V. Deubel, J. Virol. 70:4090–4096, 1996). In this study, we investigated whether apoptotic cell death occurred in the central nervous system (CNS) of neonatal mice inoculated intracerebrally with DEN virus. We showed that serial passage of a wild-type human isolate of DEN virus in mouse brains selected highly neurovirulent variants which replicated more efficiently in the CNS. Infection of newborn mice with these neurovirulent variants produced fatal encephalitis within 10 days after inoculation. Virus-induced cell death and oligonucleosomal DNA fragmentation were observed in mouse brain tissue by day 9. Infected mouse brain tissue was assayed for apoptosis by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and for virus replication by immunostaining of viral antigens and in situ hybridization. Apoptotic cell death and DEN virus replication were restricted to the neurons of the cortical and hippocampal regions. Thus, DEN virus-induced apoptosis in the CNS was a direct result of virus infection. In the murine neuronal cell line Neuro 2a, neuroadapted DEN virus variants showed infection patterns similar to those of the parental strain. However, DEN virus-induced apoptosis in these cells was more pronounced after infection with the neurovirulent variants than after infection with the parental strain.  相似文献   

18.
Theiler's virus is a neurotropic murine picornavirus which, depending on the strain, causes either an acute encephalitis or a persistent demyelinating disease. Following intracranial inoculation, the demyelinating strains infect sequentially the grey matter of the brain, the grey matter of the spinal cord, and finally the white matter of the spinal cord, where they persist and cause chronic demyelination. The neurovirulent strains cause a generally fatal encephalitis with lytic infection of neurons. The study of chimeric Theiler's viruses, obtained by recombining the genomes of demyelinating and neurovirulent strains, has shown that the viral capsid contains determinants for persistence and demyelination. In this article we describe the recombinant virus R5, in which the capsid protein VP1 and a small portion of protein 2A come from the neurovirulent GDVII strain and the rest of the genome comes from the persistent DA strain. The capsid of virus R5 also contains one mutation at amino acid 34 of VP3 (Asn-->His). Virus R5 does not persist in the central nervous system (CNS) of immunocompetent SJL/J or BALB/c mice. However, it replicates efficiently and persists in the CNS of BALB/c nu/nu mice, showing that its growth in the CNS is not impaired. In BALB/c nu/nu mice, whereas virus DA causes mortality with large amounts of viral antigens in the white matter of the spinal cord, virus R5 does not kill the animals, persists in the neurons of the grey matter of the brain, and never reaches the white matter of the spinal cord. This phenotype is due to the chimerism of the capsid and/or to the mutation in VP3. These results indicate that the capsid plays an important role in the characteristic migration of Theiler's virus within the CNS.  相似文献   

19.
Infection and injury of neurons by West Nile encephalitis virus   总被引:6,自引:0,他引:6       下载免费PDF全文
West Nile virus (WNV) infects neurons and leads to encephalitis, paralysis, and death in humans, animals, and birds. We investigated the mechanism by which neuronal injury occurs after WNV infection. Neurons in the anterior horn of the spinal cords of paralyzed mice exhibited a high degree of WNV infection, leukocyte infiltration, and degeneration. Because it was difficult to distinguish whether neuronal injury was caused by viral infection or by the immune system response, a novel tissue culture model for WNV infection was established in neurons derived from embryonic stem (ES) cells. Undifferentiated ES cells were relatively resistant to WNV infection. After differentiation, ES cells expressed neural antigens, acquired a neuronal phenotype, and became permissive for WNV infection. Within 48 h of exposure to an exceedingly low multiplicity of infection (5 x 10(-4)), 50% of ES cell-derived neurons became infected, producing nearly 10(7) PFU of infectious virus per ml, and began to die by an apoptotic mechanism. The establishment of a tractable virus infection model in ES cell-derived neurons facilitates the study of the molecular basis of neurotropism and the mechanisms of viral and immune-mediated neuronal injury after infection by WNV or other neurotropic pathogens.  相似文献   

20.
A temperature-sensitive mutant of Moloney murine leukemia virus TB (MoMuLV-TB), ts1, which is defective in intracellular processing of envelope precursor protein (Pr80env), also possesses the ability to induce hind-limb paralysis in infected mice. To investigate whether ts1 has acquired neurotropism and to determine to what extent it can replicate in the central nervous system, we compared viral titers in the spleen, plasma, spinal cord, and brain throughout the course of infection of mice infected with ts1 and parental wild-type (wt) MoMuLV-TB. In both the ts1- and wt-inoculated mice, the concentrations of infectious virus recovered from the plasma and spleen increased rapidly and reached a plateau by 10 days postinfection (p.i.). In contrast, virus concentrations in the spinal cord and brain of ts1-inoculated mice increased gradually and reached a titer comparable to that in the spleen and exceeding that in the plasma only at 25 to 30 days p.i. At this time, the virus titer was approximately 200X greater in ts1-infected spinal cord tissue and approximately 20X greater in ts1-infected brain tissue than in the same wt-infected tissues. Paralysis became evident at 25 to 30 days p.i. in ts1-inoculated mice, whereas the wt-inoculated mice were normal. In addition, a substantial amount of Pr80env was detected in the spinal cords of ts1-inoculated mice compared with that found in the spinal cords of wt-inoculated mice. The infectious virus isolated from ts1-infected nerve tissue was found to possess the characteristic phenotype of the ts1 virus. Microscopic lesions of ts1-inoculated mice at 30 days p.i. consisted of vacuolar degeneration of motor neurons and spongy change of white matter in the brain stem and spinal cord. Similar but less severe lesions were observed in wt-inoculated mice. With primary cultures of central nervous system tissue we showed that ts1 can infect and replicate in both neuron and glial cells. In contrast, although wt MoMuLV-TB replicated in glial cell-rich culture, viral replication was barely detectable in neuron-rich culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号