首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the liver flukeFasciola hepatica (phylum Platyhelminthes, class Trematoda) has been determined, within which have been identified the genes for tRNAala, tRNAasp, respiratory chain NADH dehydrogenase subunit I (ND1), tRNAasn, tRNApro, tRNAile, tRNAlys, ND3, tRNAserAGN, tRNAtrp, and cytochromec oxidase subunit I (COI). The 11 genes are arranged in the order given and are all transcribed from the same strand of the molecule. The overall order of theF. hepatica mitochondrial genes differs from what is found in other metazoan mtDNAs. All of the sequenced tRNA genes except the one for tRNAserAGN can be folded into a secondary structure with four arms resembling most other metazoan mitochondrial tRNAs, rather than the tRNAs that contain a TψC arm replacement loop, found in nematode mtDNAs. TheF. hepatica mitochondrial tRNAserAGN gene contains a dihydrouridine arm replacement loop, as is the case in all other metazoan mtDNAs examined to date. AGA and AGG are found in theF. hepatica mitochondrial protein genes and both codons appear to specify serine. These findings concerningF. hepatica mtDNA indicate that both a dihydrouridine arm replacement loop-containing tRNAserAGN gene and the use of AGA and AGG codons to specify serine must first have occurred very early in, or before, the evolution of metazoa.  相似文献   

2.
Liriomyza trifolii (Diptera: Agromyzidae) is one of the most economically significant pests in the world. In this paper we present sequence data for the complete mitochondrial genome of L. trifolii. The circular genome is 16,141 bp long and contains one encoding region including 37 genes and one non-coding A+T-rich region. Gene numbers and organization is similar to that of the typical insect mitochondrial genomes except that two additional tRNA genes are found in the A+T-rich region (tRNAThr and tRNALeu(UUR)). All of the protein initiation codons are ATN, except ND1 which begins with GTG and COI which is initiated by the quadruplet ATCA. The 22 tRNA anticodons of L. trifolii match those observed in Drosophila yakuba, and all of tRNAs form the typical cloverleaf structure except for tRNASer(AGN), which has lost the DHU-arm. The A+T-rich region of L. trifolii also contains two previously noted Diperan features—a highly conserved polyT stretch and a (TA)n stretch.  相似文献   

3.
Summary The nucleotide sequences of the mitochondrial origin of light-strand replication and the five tRNA genes surrounding it were determined for three marsupials. The region was found to be rearranged, leaving only the tRNATyr gene at the same position as in placental mammals andXenopus. Distribution of the same rearranged genotype among two marsupial families indicates that the events causing the rearrangements took place in an early marsupial ancestor. The putative mitochondrial light-strand origin of replication in marsupials contains a hairpin structure similar to other vertebrate origins and, in addition, extensive flanking sequences that are not found in other vertebrates. Sequence comparisons among the marsupials as well as placentals indicate that the tRNATyr gene has been evolving under more constraints than the other tRNA genes.Deceased July 21, 1991  相似文献   

4.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

5.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   

6.
We have isolated segments of Drosophila melanogaster DNA that contain two clusters of tRNA2Lys genes. In one segment, pPW511, there is a cluster of three of these genes surrounded by other tRNA genes. Two other segments, pPW516 and pPW541. share a 3 × 103 base-pair region that has a cluster of four tRNA2Lys genes. This cluster is flanked by 20 × 103 base-pairs of DNA that does not appear to have other tRNA genes. The tRNA genes in both clusters are irregularly spaced and are intermingled with moderately repetitive DNA. Each cluster is present once or perhaps twice in the haploid genome and has the same arrangement of restriction endonuclease sites in the genomic DNA as in the isolated, cloned DNA. In situ hybridization to polytene chromosomes localized the pPW511 cluster to the 42A region and the pPW516/541 cluster to the 42E region. Another region, 50B, also contains tRNA2Lys genes. In sum, these cloned tRNA2Lys genes account for most of this gene family and are irregularly spaced in two clusters.  相似文献   

7.
8.
Analysis of a drosophila tRNA gene cluster   总被引:23,自引:0,他引:23  
  相似文献   

9.
The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA Ser(UCN) , tRNA Gln , tRNA Ala , tRNA Val , tRNA Asp ) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=−0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.  相似文献   

10.
Three members of a collection of pBR322-yeast DNA recombinant plasmids containing yeast tRNA genes have been analyzed and sequenced. Each plasmid carries a single tRNA gene: pY44, tRNASer2; pY41, tRNAArg2; pY7, tRNAVal1. All three genes are intronless and terminate in a cluster of Ts in the non-coding strand. The sequence information here and previously determined sequences allow an extensive comparison of the regions flanking several yeast tRNA genes. This analysis has revealed novel features in tRNA gene arrangement. Blocks of homology in the flanking regions were found between the tRNA genes of an isoacceptor family but, more interestingly, also between genes coding for tRNAs of different amino-acid specificities. Particularly, three examples are discussed in which sequence elements in the neighborhood of different tRNA genes have been conserved to a high degree and over long distances.  相似文献   

11.
In this paper, the complete mitochondrial genome of Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini) is reported; a circular molecule of 15,245 bp in size. For A. issoria, genes are arranged in the same order and orientation as the complete sequenced mitochondrial genomes of the other lepidopteran species, except for the presence of an extra copy of tRNAIle(AUR)b in the control region. All protein-coding genes of A. issoria mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that COI gene uses TTG as its initial codon and terminates in a single T residue. All tRNA genes possess the typical clover leaf secondary structure except for tRNASer(AGN), which has a simple loop with the absence of the DHU stem. The sequence, organization and other features including nucleotide composition and codon usage of this mitochondrial genome were also reported and compared with those of other sequenced lepidopterans mitochondrial genomes. There are some short microsatellite-like repeat regions (e.g., (TA)9, polyA and polyT) scattered in the control region, however, the conspicuous macro-repeats units commonly found in other insect species are absent.  相似文献   

12.
Summary A cluster of tRNA genes (tRNA UAG Leu , tRNA CUG Gln , tRNA UUU Lys , tRNA UCU Arg ) and an adjacent tRNA GCC Gly have been assigned to human chromosome 17p12–p13.1 by in situ hybridization using a 4.2 kb human DNA fragment for tRNALeu, tRNAGln, tRNALys, tRNAArg, and, for tRNAGly, 1.3 kb and 0.58 kb human DNA fragments containing these genes as probes. This localization was confirmed and refined to 17p13.100–p13.105 using a somatic cell hybrid mapping panel. Preliminary experiments with the biotiny lated tRNA Leu, Gln, Lys, Arg probe and metaphase spreads from other great apes suggest the presence of a hybridization site on the long arm of gorilla (Gorilla gorilla) chromosome 19 and the short arm of orangutan (Pongo pygmaeus) chromosome 19 providing further support for homology between HSA17, GGO19 and PPY19.  相似文献   

13.
14.
Genomic size of animal mitochondrial DNA is usually minimized over time. Thus, when regional duplications occur, they are followed by a rapid elimination of redundant material. In contrast to this general view, we report here long-sustained tRNA pseudogenes in the mitochondrial genome (mitogenome) of teleost fishes of the family Scaridae (parrotfishes). During the course of a molecular phylogenetic study of the suborder Labroidei, we determined the complete nucleotide sequence of the mitogenome for a parrotfish, Chlorurus sordidus, and found a gene rearrangement accompanied by a tRNA pseudogene. In the typical gene order of vertebrates, a tRNA-gene cluster between ND1 and ND2 genes includes tRNAIle (I), tRNAGln (Q), and tRNAMet (M) genes in this order (IQM). However, in the mitogenome of the parrotfish, the tRNAMet gene was inserted between the tRNAIle and the tRNAGln genes, and the tRNAGln gene was followed by a putative tRNAMet pseudogene (M). Such a tRNA gene rearrangement including a pseudogene (IMQM) was found in all of the 10 examined species, representing 7 of the 10 currently recognized scarid genera. All sister groups examined (20 species of Labridae and a single species of Odacidae) had the typical gene order of vertebrate mitogenomes. Phylogenetic analysis of the tRNAMet genes and the resulting pseudogenes demonstrated that the ancestral tRNAMet gene was duplicated in a common ancestor of the parrotfish. Based on the fossil record, these results indicate that the pseudogenes have survived at least 14 million years. Most of the vertebrate mitochondrial gene rearrangements involving the IQM region have held the tRNAMet gene just upstream of the ND2 gene, and even in a few exceptional cases, including the present ones, the tRNA pseudogenes have been found in that position. In addition, most of these tRNAMet pseudogenes maintained clover-leaf secondary structures, with the remainder sustaining the clover-leaf structure in the top half (TC and acceptor arms). Considering their potential secondary structures (holding top halves of the clover-leaf structures), locations within mitogenomes (flanking the 5 ends of the ND2 genes) and stabilities over time (survived at least 14 Myr), it is likely that the tRNA pseudogenes retain function as punctuation marks for mitochondrial ND2 mRNA processing.This article contains online supplementary material.Reviewing Editor: Dr. Axel Meyer  相似文献   

15.
The crustacean isopod Armadillidium vulgare is characterized by an unusual ∼42-kb-long mitochondrial genome consisting of two molecules co-occurring in mitochondria: a circular ∼28-kb dimer formed by two ∼14-kb monomers fused in opposite polarities and a linear ∼14-kb monomer. Here we determined the nucleotide sequence of the fundamental monomeric unit of A. vulgare mitochondrial genome, to gain new insight into its structure and evolution. Our results suggest that the junction zone between monomers of the dimer structure is located in or near the control region. Direct sequencing indicated that the nucleotide sequences of the different monomer units are virtually identical. This suggests that gene conversion and/or replication processes play an important role in shaping nucleotide sequence variation in this mitochondrial genome. The only heteroplasmic site we identified predicts an alloacceptor tRNA change from tRNAAla to tRNAVal. Therefore, in A. vulgare, tRNAAla and tRNAVal are found at the same locus in different monomers, ensuring that both tRNAs are present in mitochondria. The presence of this heteroplasmic site in all sequenced individuals suggests that the polymorphism is selectively maintained, probably because of the necessity of both tRNAs for maintaining proper mitochondrial functions. Thus, our results provide empirical evidence for the tRNA gene recruitment model of tRNA evolution. Moreover, interspecific comparisons showed that the A. vulgare mitochondrial gene order is highly derived compared to the putative ancestral arthropod type. By contrast, an overall high conservation of mitochondrial gene order is observed within crustacean isopods.  相似文献   

16.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

17.
18.

Background

Vertebrate mitochondrial genomes (mitogenomes) are 16–18 kbp double-stranded circular DNAs that encode a set of 37 genes. The arrangement of these genes and the major noncoding region is relatively conserved through evolution although gene rearrangements have been described for diverse lineages. The tandem duplication-random loss model has been invoked to explain the mechanisms of most mitochondrial gene rearrangements. Previously reported mitogenomic sequences for geckos rarely included gene rearrangements, which we explore in the present study.

Results

We determined seven new mitogenomic sequences from Gekkonidae using a high-throughput sequencing method. The Tropiocolotes tripolitanus mitogenome involves a tandem duplication of the gene block: tRNAArg, NADH dehydrogenase subunit 4L, and NADH dehydrogenase subunit 4. One of the duplicate copies for each protein-coding gene may be pseudogenized. A duplicate copy of the tRNAArg gene appears to have been converted to a tRNAGln gene by a C to T base substitution at the second anticodon position, although this gene may not be fully functional in protein synthesis. The Stenodactylus petrii mitogenome includes several tandem duplications of tRNALeu genes, as well as a translocation of the tRNAAla gene and a putative origin of light-strand replication within a tRNA gene cluster. Finally, the Uroplatus fimbriatus and U. ebenaui mitogenomes feature the apparent loss of the tRNAGlu gene from its original position. Uroplatus fimbriatus appears to retain a translocated tRNAGlu gene adjacent to the 5’ end of the major noncoding region.

Conclusions

The present study describes several new mitochondrial gene rearrangements from Gekkonidae. The loss and reassignment of tRNA genes is not very common in vertebrate mitogenomes and our findings raise new questions as to how missing tRNAs are supplied and if the reassigned tRNA gene is fully functional. These new examples of mitochondrial gene rearrangements in geckos should broaden our understanding of the evolution of mitochondrial gene arrangements.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-930) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
Summary Two bean mitochondria methionine transfer RNAs, purified by RPC-5 chromatography and two-dimensional gel electrophoresis, have been sequenced usingin vitro post-labeling techniques.One of these tRNAsMet has been identified by formylation using anE. coli enzyme as the mitochondrial tRNAF Met. It displays strong structural homologies with prokaryotic and chloroplast tRNAF Met sequences (70.1–83.1%) and with putative initiator tRNAm Met genes described for wheat, maize andOenothera mitochondrial genomes (88.3–89.6%).The other tRNAMet, which is the mitochondrial elongator tRNAF Met, shows a high degree of sequence homology (93.3–96%& with chloroplast tRNAm Met, but a weak homology (40.7%) with a sequenced maize mitochondrial putative elongator tRNAm Met gene.Bean mitochondrial tRNAF Met and tRNAm Met were hybridized to Southern blots of the mitochondrial genomes of wheat and maize, whose maps have been recently published (15, 22), in order to locate the position of their genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号