首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species such as Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). However, the importance of MAPK signaling pathways in the disease resistance of crops is still largely uninvestigated. To better understand the role of MAPK signaling pathways in disease resistance in soybean (Glycine max), 13, nine, and 10 genes encoding distinct MAPKs, MAPKKs, and MAPKKKs, respectively, were silenced using virus-induced gene silencing mediated by Bean pod mottle virus. Among the plants silenced for various MAPKs, MAPKKs, and MAPKKKs, those in which GmMAPK4 homologs (GmMPK4s) were silenced displayed strong phenotypes including stunted stature and spontaneous cell death on the leaves and stems, the characteristic hallmarks of activated defense responses. Microarray analysis showed that genes involved in defense responses, such as those in salicylic acid (SA) signaling pathways, were significantly up-regulated in GmMPK4-silenced plants, whereas genes involved in growth and development, such as those in auxin signaling pathways and in cell cycle and proliferation, were significantly down-regulated. As expected, SA and hydrogen peroxide accumulation was significantly increased in GmMPK4-silenced plants. Accordingly, GmMPK4-silenced plants were more resistant to downy mildew and Soybean mosaic virus compared with vector control plants. Using bimolecular fluorescence complementation analysis and in vitro kinase assays, we determined that GmMKK1 and GmMKK2 might function upstream of GmMPK4. Taken together, our results indicate that GmMPK4s negatively regulate SA accumulation and defense response but positively regulate plant growth and development, and their functions are conserved across plant species.  相似文献   

2.
促分裂原活化蛋白激酶(MAPK)级联途径是真核生物中高度保守的信号通路。MAPK级联途径由MAPKs、MAPKKs和MAPKKKs组成,通过MAPKKK→MAPKK→MAPK的逐级磷酸化传递细胞信号。AtMEKK1是拟南芥MAPKKK家族中的一员,是目前研究较为详细的MAPKKK。本文就AtMEKK1的结构特征、生理功能、信号转导中的"交谈"及其复杂性进行综述,旨在探讨植物MAPKKK的信号转导作用。  相似文献   

3.
Mitogen-activated protein kinase (MAPK) cascades are involved in various processes from plant growth and development to biotic and abiotic stress responses. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), play crucial roles in MAPK cascades to mediate a variety of stress responses in plants. However, few MAPKKs have been functionally characterized in cotton (Gossypium hirsutum). In this study, a novel gene, GhMKK5, from cotton belonging to the group C MAPKKs was isolated and characterized. The expression of GhMKK5 can be induced by pathogen infection, abiotic stresses, and multiple defence-related signal molecules. The overexpression of GhMKK5 in Nicotiana benthamiana enhanced the plants' resistance to the bacterial pathogen Ralstonia solanacearum by elevating the expression of pathogen resistance (PR) genes, including PR1a, PR2, PR4, PR5, and NPR1, but increased the plants' sensitivity to the oomycete pathogen Phytophthora parasitica var. nicotianae Tucker. Importantly, GhMKK5-overexpressing plants displayed markedly elevated expression of reactive oxygen species-related and cell death marker genes, such as NtRbohA and NtCDM, and resulted in hypersensitive response (HR)-like cell death characterized by the accumulation of H(2)O(2). Furthermore, it was demonstrated that GhMKK5 overexpression in plants reduced their tolerance to salt and drought stresses, as determined by statistical analysis of seed germination, root length, leaf water loss, and survival rate. Drought obviously accelerated the cell death phenomenon in GhMKK5-overexpressing plants. These results suggest that GhMKK5 may play an important role in pathogen infection and the regulation of the salt and drought stress responses in plants.  相似文献   

4.
植物中的MAPK及其在信号传导中的作用   总被引:7,自引:0,他引:7  
促分裂原活化蛋白激酶(MAPKs)是一类存在于真核生物中的丝氨酸/苏氨酸蛋白激酶。同动物和酵母中MAPKs类似,植物中的MAPK级联途径也是由MAPKs、MAPKKs、MAPKKKs三种类型的激酶组成。植物细胞内受体接受外界刺激信号,然后依次磷酸化激活MAPKKKs、MAPKKs和MAPKs,并影响相关基因表达。目前已经从植物中分离到一些MAPKs、MAPKKs和MAPKKKs,它们参与了植物激素、生物胁迫及非生物胁迫等过程的信号传导。介绍了植物响应外界环境胁迫过程中,不同机制和因子对MAPKs级联途径的调控。  相似文献   

5.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant innate immunity. Overexpression of StMEK1(DD), a constitutively active MAPK kinase that activates salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), provokes hypersensitive response-like cell death in Nicotiana benthamiana. Here we purified a 51-kD MAPK, which was activated in potato (Solanum tuberosum) tubers treated with hyphal wall elicitor of a plant pathogen, and isolated the cDNA designated StMPK1. The deduced amino acid sequence of the StMPK1 showed strong similarity to stress-responsive MAPKs, such as tobacco (Nicotiana tabacum) SIPK and Arabidopsis (Arabidopsis thaliana) AtMPK6. To investigate the downstream signaling of StMPK1, we identified several proteins phosphorylated by StMPK1 (PPSs) using an in vitro expression cloning method. To dissect the biological function of PPSs in the plant defense, we employed virus-induced gene silencing (VIGS) in N. benthamiana. VIGS of NbPPS3 significantly delayed cell death induced by the transient expression of StMEK1(DD) and treatment with hyphal wall elicitor. Furthermore, the mobility shift of NbPPS3 on SDS-polyacrylamide gel was induced by transient expression of StMEK1(DD). The mobility shift of NbPPS3 induced by StMEK1(DD) was not compromised by VIGS of WIPK or SIPK alone, but drastically reduced by the silencing of both WIPK and SIPK. This work strongly supports the idea that PPS3 is a physiological substrate of StMPK1 and is involved in cell death activated by a MAPK cascade.  相似文献   

6.
Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.  相似文献   

7.
In common with other eukaryotes, plants utilize mitogen-activated protein kinase (MAPK) cascades to mediate responses to a wide variety of stimuli. In contrast to other eukaryotes, plants have an unusually large number of MAPK components, such as more than 20 MAPKs, 10 MAPK kinases (MAPKKs), and 60 MAPKK kinases (MAPKKKs) in Arabidopsis (MAPK Group (2002) Trends Plant Sci. 7, 301-308). Presently it is mostly unknown how MAPK signaling specificity is generated in plants. Here we have isolated OMTK1 (oxidative stress-activated MAP triple-kinase 1), a novel MAPKKK from alfalfa (Medicago sativa). In plant protoplasts, OMTK1 showed basal kinase activity and was found to induce cell death. Among a panel of hormones and stresses tested, only H(2)O(2) was found to activate OMTK1. Out of four MAPKs, OMTK1 specifically activated MMK3 resulting in an increased cell death rate. Pull-down analysis between recombinant proteins indicated that OMTK1 directly interacts with MMK3 and that OMTK1 and MMK3 are part of a protein complex in vivo. These results indicate that OMTK1 plays a MAPK scaffolding role and functions in activation of H(2)O(2) -induced cell death in plants.  相似文献   

8.
Mitogen-activated protein kinase (MAPK) cascades are rapidly activated upon plant recognition of invading pathogens. Here, we describe the use of virus-induced gene silencing (VIGS) to study the role of candidate plant MAP kinase kinase kinase (MAPKKK) homologs of human MEKK1 in pathogen-resistance pathways. We demonstrate that silencing expression of a tobacco MAPKKK, Nicotiana Protein Kinase 1 (NPK1), interferes with the function of the disease-resistance genes N, Bs2, and Rx, but does not affect Pto- and Cf4-mediated resistance. Further, NPK1-silenced plants also exhibit reduced cell size, defective cytokinesis, and an overall dwarf phenotype. Our results provide evidence that NPK1 functions in the regulation of N-, Bs2-, and Rx-mediated resistance responses and may play a role in one or more MAPK cascades, regulating multiple cellular processes.  相似文献   

9.
促分裂原活化蛋白激酶(MAPK)级联途径在真核生物中是高度保守的,由MAPKs,MAPKKs,MAPKKKs组成,通过MAPKKK→MAPKK→MAPK逐级磷酸化传递细胞信号.已有大量研究表明,MAPK在植物响应生物与非生物胁迫,以及植物激素和细胞周期的信号转导中起重要作用.在植物响应各种逆境过程中激活的MAPK基因,细胞内的定位发生动态变化.选择性剪接是真核生物中调节基因表达的重要模式,能够影响蛋白的结合特性、胞内定位、酶的活性、蛋白的稳定性和翻译后的修饰.MAPK基因的选择性剪接能产生不同的转录异型并具有不同的亚细胞定位.本文综述这方面的研究进展.  相似文献   

10.
11.
Mitogen-activated protein kinase kinase kinase (MAPKKK) are the first components of MAPK cascades, which play pivotal roles in signaling during plant development and physiological processes. The genome of rice encodes 75 MAPKKKs, of which 43 are Raf-like MAPKKKs. The functions and action modes of most of the Raf-like MAPKKKs, whether they function as bona fide MAPKKKs and which are their downstream MAPKKs, are largely unknown. Here, we identified the osmapkkk43 mutant, which conferred broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the destructive bacterial pathogen of rice. Oryza sativa (Os)MAPKKK43 encoding a Raf-like MAPKKK was previously known as Increased Leaf Angle 1 (OsILA1). Genetic analysis indicated that OsILA1 functioned as a negative regulator and acted upstream of the OsMAPKK4–OsMAPK6 cascade in rice–Xoo interactions. Unlike classical MAPKKKs, OsILA1 mainly phosphorylated the threonine 34 site at the N-terminal domain of OsMAPKK4, which possibly influenced the stability of OsMAPKK4. The N-terminal domain of OsILA1 is required for its homodimer formation and its full phosphorylation capacity. Taken together, our findings reveal that OsILA1 acts as a negative regulator of the OsMAPKK4–OsMAPK6 cascade and is involved in rice–Xoo interactions.  相似文献   

12.
A high-throughput overexpression screen of Nicotiana benthamiana cDNAs identified a gene for a mitogen-activated protein kinase kinase (MAPKK) as a potent inducer of the hypersensitive response (HR)-like cell death. NbMKK1 protein is localized to the nucleus, and the N-terminal putative MAPK docking site of NbMKK1 is required for its function as a cell-death inducer. NbMKK1-mediated leaf-cell death was compromised in leaves where NbSIPK expression was silenced by virus-induced gene silencing. A yeast two-hybrid assay showed that NbMKK1 and NbSIPK physically interact, suggesting that NbSIPK is one of the downstream targets of NbMKK1. Phytophthora infestans INF1 elicitor-mediated HR was delayed in NbMKK1-silenced plants, indicating that NbMKK1 is involved in this HR pathway. Furthermore, the resistance of N. benthamiana to a non-host pathogen Pseudomonas cichorii was compromised in NbMKK1-silenced plants. These results demonstrate that MAPK cascades involving NbMKK1 control non-host resistance including HR cell death.  相似文献   

13.
Mitogen-activated protein (MAP) kinase cascades are fundamental components of the signaling pathways associated with plant immunity. Despite the large number of MAP kinase kinase kinases (MAPKKK) encoded in the plant genome, only very few of them have an assigned function. Here, we identified MAPKKK gene of tomato (Solanum lycopersicum), SIMAPKKKε, which is required for hypersensitive response cell death and disease resistance against Gram-negative bacterial pathogens. Silencing of SIMAPKKKε compromised tomato resistance to Xanthomonas campestris and Pseudomonas syringae strains, resulting in the appearance of disease symptoms and enhanced bacterial growth. In addition, silencing of NbMAPKKKε in Nicotiana benthamiana plants significantly inhibited the cell death triggered by expression of different R gene/effector gene pairs. Conversely, overexpression of either the full-length SIMAPKKKε gene or its kinase domain in N. benthamiana leaves caused pathogen-independent activation of cell death that required an intact kinase catalytic domain. Moreover, by suppressing the expression of various MAPKK and MAPK genes and overexpressing the SIMAPKKKε kinase domain, we identified a signaling cascade acting downstream of SIMAPKKKε that includes MEK2, WIPK and SIPK. Additional epistasis experiments revealed that SIPKK functions as a negative regulator of SIMAPKKKε-mediated cell death. Our results provide evidence that SIMAPKKKε is a signaling molecule that positively regulates cell death networks associated with plant immunity.  相似文献   

14.
Many plant pathogens cause disease symptoms that manifest over days as regions of localized cell death. Localized cell death (the hypersensitive response; HR) also occurs in disease-resistant plants, but this response appears within hours of attempted infection and may restrict further pathogen growth. We identified a MAP kinase kinase kinase gene (MAPKKKalpha) that is required for the HR and resistance against Pseudomonas syringae. Significantly, we found that MAPKKKalpha also regulates cell death in susceptible leaves undergoing P. syringae infection. Overexpression of MAPKKKalpha in leaves activated MAPKs and caused pathogen-independent cell death. By overexpressing MAPKKKalpha in leaves and suppressing expression of various MAPKK and MAPK genes by virus-induced gene silencing, we identified two distinct MAPK cascades that act downstream of MAPKKKalpha. These results demonstrate that signal transduction pathways associated with both plant immunity and disease susceptibility share a common molecular switch.  相似文献   

15.
16.
M Takekawa  T Maeda    H Saito 《The EMBO journal》1998,17(16):4744-4752
MAPK (mitogen-activated protein kinase) cascades are common eukaryotic signaling modules that consist of a MAPK, a MAPK kinase (MAPKK) and a MAPKK kinase (MAPKKK). Because phosphorylation is essential for the activation of both MAPKKs and MAPKs, protein phosphatases are likely to be important regulators of signaling through MAPK cascades. To identify protein phosphatases that negatively regulate the stress-responsive p38 and JNK MAPK cascades, we screened human cDNA libraries for genes that down-regulated the yeast HOG1 MAPK pathway, which shares similarities with the p38 and JNK pathways, using a hyperactivating yeast mutant. In this screen, the human protein phosphatase type 2Calpha (PP2Calpha) was found to negatively regulate the HOG1 pathway in yeast. Moreover, when expressed in mammalian cells, PP2Calpha inhibited the activation of the p38 and JNK cascades induced by environmental stresses. Both in vivo and in vitro observations indicated that PP2Calpha dephosphorylated and inactivated MAPKKs (MKK6 and SEK1) and a MAPK (p38) in the stress-responsive MAPK cascades. Furthermore, a direct interaction of PP2Calpha and p38 was demonstrated by a co-immunoprecipitation assay. This interaction was observed only when cells were stimulated with stresses or when a catalytically inactive PP2Calpha mutant was used, suggesting that only the phosphorylated form of p38 interacts with PP2Calpha.  相似文献   

17.
Programmed cell death (PCD) associated with immunity is triggered when a plant disease resistance (R) protein recognizes a corresponding pathogen virulence protein. In tomato, detection by the host Pto kinase of the Pseudomonas syringae proteins AvrPto or AvrPtoB causes localized PCD. Previously, we reported that both MAPKKKα (mitogen-activated protein kinase kinase kinase) and the tomato 14-3-3 protein 7 (TFT7) positively regulate Pto-mediated PCD in tomato and Nicotiana benthamiana. In addition, in contrast to MAPKKKα, TFT7 is required for PCD mediated by four other R proteins. Here we investigate why TFT7 is required for PCD induced by diverse R proteins in plants. We discovered that a MAPKK, SlMKK2, which acts downstream of SlMAPKKKα, also interacts with TFT7 in plant cells. Gene silencing experiments revealed that the orthologous genes of both SlMKK2 and TFT7 in N. benthamiana are required for PCD mediated by the same set of R proteins. SlMKK2 and its orthologs contain a 14-3-3 binding site in their N terminus, and Thr(33) in this site is required for interaction with TFT7 in vivo. Like the structurally similar human 14-3-3ε protein, TFT7 forms a homodimer in vivo. Because TFT7 interacts with both SlMAPKKKα and SlMKK2 and also forms a homodimer, we propose that TFT7 may coordinately recruit these client proteins for efficient signal transfer, leading to PCD induction.  相似文献   

18.
There is a growing body of evidence indicating that mitogen-activated protein kinase (MAPK) cascades are involved in plant defense responses. Analysis of the completed Arabidopsis thaliana genome sequence has revealed the existence of 20 MAPKs, 10 MAPKKs and 60 MAPKKKs, implying a high level of complexity in MAPK signaling pathways, and making the assignment of gene functions difficult. The MAP kinase kinase 7 (MKK7) gene of Arabidopsis has previously been shown to negatively regulate polar auxin transport. Here we provide evidence that MKK7 positively regulates plant basal and systemic acquired resistance (SAR). The activation-tagged bud1 mutant, in which the expression of MKK7 is increased, accumulates elevated levels of salicylic acid (SA), exhibits constitutive pathogenesis-related (PR) gene expression, and displays enhanced resistance to both Pseudomonas syringae pv. maculicola (Psm) ES4326 and Hyaloperonospora parasitica Noco2. Both PR gene expression and disease resistance of the bud1 plants depend on SA, and partially depend on NPR1. We demonstrate that the constitutive defense response in bud1 plants is a result of the increased expression of MKK7, and requires the kinase activity of the MKK7 protein. We found that expression of the MKK7 gene in wild-type plants is induced by pathogen infection. Reducing mRNA levels of MKK7 by antisense RNA expression not only compromises basal resistance, but also blocks the induction of SAR. Intriguingly, ectopic expression of MKK7 in local tissues induces PR gene expression and resistance to Psm ES4326 in systemic tissues, indicating that activation of MKK7 is sufficient for generating the mobile signal of SAR.  相似文献   

19.
DspA/E is a pathogenicity factor of Erwinia amylovora that is translocated into the plant cell cytoplasm through an Hrp type III secretion system. Transient expression of dspA/E in Nicotiana benthamiana or yeast induced cell death, as it does in N. tabacum and apple as described previously. DspA/E-induced cell death in N. benthamiana was not inhibited by coexpression of AvrPtoB of Pseudomonas syringae pv. tomato , which inhibits programmed cell death (PCD) induced by several other elicitors in plants. Silencing of NbSGT1 , the expression of which is required for PCD mediated by several resistance proteins of plants, prevented DspA/E-induced cell death in N. benthamiana. However, silencing of NbRAR1 , or two MAP kinase kinase genes, which are required for PCD associated with many resistance genes in plants, did not prevent cell death induced by DspA/E. Silencing of NbSGT1 also compromised non-host resistance against E. amylovora . E. amylovora grew rapidly within the first 24 h after infiltration in N. benthamiana , and DspA/E was required for this early rapid growth. However, bacterial cell numbers decreased after 24 h in TRV-vector-transformed plants, whereas a dspA/E mutant strain grew to high populations in NbSGT1 -silenced plants. Our results indicate that DspA/E enhances virulence of E. amylovora in N. benthamiana, but the bacteria are then recognized by the plant, resulting in PCD and death of bacterial cells or restriction of bacterial cell growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号