首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We report the results of our investigations of a large, inbred, aboriginal Canadian kindred with nine muscular dystrophy patients. The ancestry of all but two of the carrier parents could be traced to a founder couple, seven generations back. Seven patients presented with proximal myopathy consistent with limb girdle-type muscular dystrophy (LGMD), whereas two patients manifested predominantly distal wasting and weakness consistent with Miyoshi myopathy (distal autosomal recessive muscular dystrophy) (MM). Age at onset of symptoms, degree of creatine kinase elevation, and muscle histology were similar in both phenotypes. Segregation of LGMD/MM is consistent with autosomal recessive inheritance, and the putative locus is significantly linked (LOD scores >3.0) to six marker loci that span the region of the LGMD2B locus on chromosome 2p. Our initial hypothesis that the affected patients would all be homozygous by descent for microsatellite markers surrounding the disease locus was rejected. Rather, two different core haplotypes, encompassing a 4-cM region spanned by D2S291-D2S145-D2S286, segregated with the disease, indicating that there are two mutant alleles of independent origin in this kindred. There was no association, however, between the two different haplotypes and clinical variability; they do not distinguish between the LGMD and MM phenotypes. Thus, we conclude that LGMD and MM in our population are caused by the same mutation in LGMD2B and that additional factors, both genetic and nongenetic, must contribute to the clinical phenotype.  相似文献   

2.
Two autosomal recessive muscle diseases, limb girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM), are caused by mutations in the dysferlin gene. These mutations result in poor ability to repair cell membrane damage, which is suggested to be the cause for this disease. However, many patients who share clinical features with MM-type muscular dystrophy do not carry mutations in dysferlin gene. To understand the basis of MM that is not due to mutations in dysferlin gene, we analyzed cells from patients in one such family. In these patients, we found no defects in several potential candidates - annexin A2, caveolin-3, myoferlin and the MMD2 locus on chromosome 10p. Similar to dysferlinopathy, these cells also exhibit membrane repair defects and the severity of the defect correlated with severity of their disease. However, unlike dysferlinopathy, none of the conventional membrane repair pathways are defective in these patient cells. These results add to the existing evidence that cell membrane repair defect may be responsible for MM-type muscular dystrophy and indicate that a previously unsuspected genetic lesion that affects cell membrane repair pathway is responsible for the disease in the non-dysferlin MM patients.  相似文献   

3.
Of the many crucial functions of the ER, homeostasis of physiological calcium increase is critical for signaling. Plasma membrane (PM) injury causes a pathological calcium influx. Here, we show that the ER helps clear this surge in cytoplasmic calcium through an ER-resident calcium pump, SERCA, and a calcium-activated ion channel, Anoctamin 5 (ANO5). SERCA imports calcium into the ER, and ANO5 supports this by maintaining electroneutrality of the ER lumen through anion import. Preventing either of these transporter activities causes cytosolic calcium overload and disrupts PM repair (PMR). ANO5 deficit in limb girdle muscular dystrophy 2L (LGMD2L) patient cells compromises their cytosolic and ER calcium homeostasis. By generating a mouse model of LGMD2L, we find that PM injury causes cytosolic calcium overload and compromises the ability of ANO5-deficient myofibers to repair. Addressing calcium overload in ANO5-deficient myofibers enables them to repair, supporting the requirement of the ER in calcium homeostasis in injured cells and facilitating PMR.  相似文献   

4.

Background

Fifty random genetically unstudied families (limb-girdle muscular dystrophy (LGMD)/myopathy) were screened with a gene panel incorporating 759 OMIM genes associated with neurological disorders. Average coverage of the CDS and 10 bp flanking regions of genes was 99 %. All families were referred to the Neurosciences Clinic of King Faisal Specialist Hospital and Research Centre, Saudi Arabia. Patients presented with muscle weakness affecting the pelvic and shoulder girdle. Muscle biopsy in all cases showed dystrophic or myopathic changes. Our main objective was to evaluate a neurological gene panel as a first-line diagnostic test for LGMD/myopathies.

Results

Our panel identified the mutation in 76 % of families (38/50; 11 novel). Thirty-four families had mutations in LGMD-related genes with four others having variants not typically associated with LGMD. The majority of cases had recessive inheritance with homoallelic pathogenic variants (97.4 %, 37/38), as expected considering the high rate of consanguinity in the study population. In one case, we detected a heterozygous mutation in DNAJB responsible for LGMD-1E. Our cohort included seven different subtypes of LGMD2. Mutations of DYSF were the most commonly identified cause of disease followed by that in CAPN3 and FKRP. Non-LGMD myopathies were due to mutations in genes associated with congenital disorder of glycosylation (ALG2), rigid spine muscular dystrophy 1 (SEPN1), inclusion body myopathy2/Nonaka myopathy (GNE), and neuropathy (WNK1). Whole exome sequencing (WES) of patients who remained undiagnosed with the neurological panel did not improve our diagnostic yield.

Conclusions

Our neurological panel achieved a high clinical sensitivity (76 %) and is an effective first-line laboratory test in patients with LGMD and other myopathies. This sensitive, cost-effective, and rapid assay significantly assists clinical practice especially in these phenotypically and genetically heterogeneous disorders. Moreover, the application of the American College of Medical Genetics (ACMG) and Association for Molecular Pathology (AMP) guidelines applied in the classification of variant pathogenecity provides a clear interpretation for physicians on the relevance of such findings.
  相似文献   

5.
Limb girdle muscular dystrophies (LGMDs) are a clinically and genetically heterogeneous group of muscle disorders. Seven dominant (LGMD1A through G) and 15 recessive forms (LGMD2A through O) have been described. They often start in adolescence, and most patients end up wheelchair-bound 2–4 decades later. The syndrome begins in the pelvic girdle. Muscles of the shoulder girdle follow after a variable time interval. Allelic variants may present with a distal predilection of muscles, such as Miyoshi myopathy, which is caused by mutations in the dysferlin gene. The most frequent types of LGMD are calpainopathies (LGMD1A), mutations in the FKRP gene (LGMD2i), and dysferlinopathies (LGMD2B). Sarcoglycanopathies, which often start in childhood, are the next most frequent forms. In many LGMDs, a sarcolemmal protein is affected. Because of the huge heterogeneity, molecular genetic analysis normally follows a muscle biopsy and includes an extensive immunohistochemical workup. A specific therapy for this group of diseases is not yet available. Human genetic counseling is of primary importance. Treatment of contractures as well as special care for a developing cardiomyopathy are helpful for the patient.  相似文献   

6.
Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene, encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B) and the second most common being LGMD. Symptoms generally appear at the end of childhood and, although disease progression is typically slow, walking impairments eventually result. Dysferlin is a modular type II transmembrane protein for which numerous binding partners have been identified. Although dysferlin function is only partially elucidated, this large protein contains seven calcium sensor C2 domains, shown to play a key role in muscle membrane repair. On the basis of this major function, along with detailed clinical observations, it has been possible to design various therapeutic approaches for dysferlin-deficient patients. Among them, exon-skipping and minigene transfer strategies have been evaluated at the preclinical level and, to date, represent promising approaches for clinical trials. This review aims to summarize the pathophysiology of dysferlinopathies and to evaluate the therapeutic potential for treatments currently under development.  相似文献   

7.
Sarcoglycanopathies are a group of autosomal recessive limb-girdle muscular dystrophies (LGMD) caused by mutations in sarcoglycan genes: SGCA (LGMD 2D, MIM 600119), SGCB (LGMD 2E, MIM 604286), SGCG (LGMD 2C, MIM 353700), and SGCD (LGMD 2F, MIM 601287). These genes encode four transmembrane sarcoglycan subunits participating in formation of the large sarcolemmal dystrophin- glycoprotein complex. Clinical symptoms of sarcoglycanopathies resemble the ones in Duchenne/Becker muscular dystrophy and several autosomal recessive LGMD, which causes difficulties in the differential diagnostics between these diseases. This review covers the main aspects of sarcoglycanopathies, such as etiology, spectrum of mutations, clinical features and diagnostics. In addition, we review the fundamental pathogenesis mechanisms leading to sarcoglycanopathies, which can also help to understand the potential options for treatment for patients with muscular dystrophies.  相似文献   

8.
Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism.  相似文献   

9.
The human dynactin 1 gene (DCTN1) is positioned on chromosome 2p13, the candidate region for various diseases including Alström syndrome, limb-girdle muscle dystrophy, and Miyoshi myopathy. Here, we report the exon–intron structure ofDCTN1along with characterization of the 5′ upstream sequence and alternative splice variants previously identified by Tokitoet al.(1996),Mol. Biol. Cell7: 1167–1180). Knowledge of the genomic structure ofDCTN1allowed us to design intronic primers necessary for analyzing mutations in families segregating for diseases linked to this gene. These primers were tested on a French Acadian kindred segregating for Alström syndrome. No mutations were observed within the coding region ofDCTN1in this family. However, the intronic primers should allow for the rapid amplification of the coding region for mutational analysis of additional Alström families and other diseases tightly linked to theDCTN1locus on chromosome 2p13.  相似文献   

10.
TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo - distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G.  相似文献   

11.
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.  相似文献   

12.
Dysferlin protein (DYSF) is a ferlin family member found in sarcolemma and is involved in membrane repair, muscle differentiation, membrane fusion, etc. The deficiency of DYSF due to mutations is associated with different pathologic phenotypes including the autosomal recessive limb-girdle type 2B phenotype (LGMD2B), a distal anterior compartment myopathy (DMAT), and the Miyoshi myopathy (MM). In this study, we determined a missense mutation c.4253G>A on the DYSF gene in a Mexican family from an endogamic population. This mutation was assumed to be the cause of dystrophy because only homozygous individuals of the family manifest a clinical phenotype. Structural implications caused by G/D substitution at amino acid position 1418 are discussed in terms of potential importance of the dysferlin neighboring sequence.  相似文献   

13.
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.  相似文献   

14.
Miyoshi myopathy (MM) is a rare autosomal recessive disorder caused by dysferlin (DYSF) gene mutation. Miyoshi myopathy-inducing mutation sites in the DYSF gene have been discovered worldwide. In the present study, a patient with progressive lower extremity weakness is reported, for which MM was diagnosed according to clinical manifestations, muscle biopsy, and immunohistochemistry. In addition, the DYSF gene of the patient and his parents was sequenced and analyzed and two heterozygous mutations of the DYSF gene (c.4756C> T and c.5316dupC) were discovered. The first mutation correlated with MM while the second was a new mutation. The patient was diagnosed with a compound heterozygous mutation. The mutation site is a new member of pathogenic MM gene mutations.  相似文献   

15.
Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked neuromuscular diseases characterized by progressive muscular weakness and degeneration of skeletal muscles. Approximately two-thirds of the patients have large deletions or duplications in the dystrophin gene and the remaining one-third have point mutations. This study was performed to evaluate point mutations in Iranian DMD/BMD male patients. A total of 29 DNA samples from patients who did not show any large deletion/duplication mutations following multiplex polymerase chain reaction (PCR) and multiplex ligation-dependent probe amplification (MLPA) screening were sequenced for detection of point mutations in exons 50–79. Also exon 44 was sequenced in one sample in which a false positive deletion was detected by MLPA method. Cycle sequencing revealed four nonsense, one frameshift and two splice site mutations as well as two missense variants.  相似文献   

16.
The molecular chaperone network protects against the toxic misfolding and aggregation of proteins. Disruption of this network leads to a variety of protein conformational disorders. One such example recently discovered is limb-girdle muscular dystrophy type 1D (LGMD1D), which is caused by mutation of the HSP40 chaperone DNAJB6. All LGMD1D-associated mutations localize to the conserved G/F domain of DNAJB6, but the function of this domain is largely unknown. Here, we exploit the yeast HSP40 Sis1, which has known aggregation-prone client proteins, to gain insight into the role of the G/F domain and its significance in LGMD1D pathogenesis. Strikingly, we demonstrate that LGMD1D mutations in a Sis1-DNAJB6 chimera differentially impair the processing of specific conformers of two yeast prions, [RNQ+] and [PSI+]. Importantly, these differences do not simply correlate to the sensitivity of these prion strains to changes in chaperone levels. Additionally, we analyzed the effect of LGMD1D-associated DNAJB6 mutations on TDP-43, a protein known to form inclusions in LGMD1D. We show that the DNAJB6 G/F domain mutants disrupt the processing of nuclear TDP-43 stress granules in mammalian cells. These data suggest that the G/F domain mediates chaperone-substrate interactions in a manner that extends beyond recognition of a particular client and to a subset of client conformers. We propose that such selective chaperone disruption may lead to the accumulation of toxic aggregate conformers and result in the development of LGMD1D and perhaps other protein conformational disorders.  相似文献   

17.
18.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   

19.
20.
Autosomal-recessive cerebellar ataxias comprise a clinically and genetically heterogeneous group of neurodegenerative disorders. In contrast to their dominant counterparts, unraveling the molecular background of these ataxias has proven to be more complicated and the currently known mutations provide incomplete coverage for genotyping of patients. By combining SNP array-based linkage analysis and targeted resequencing of relevant sequences in the linkage interval with the use of next-generation sequencing technology, we identified a mutation in a gene and have shown its association with autosomal-recessive cerebellar ataxia. In a Dutch consanguineous family with three affected siblings a homozygous 12.5 Mb region on chromosome 3 was targeted by array-based sequence capture. Prioritization of all detected sequence variants led to four candidate genes, one of which contained a variant with a high base pair conservation score (phyloP score: 5.26). This variant was a leucine-to-arginine substitution in the DUF 590 domain of a 16K transmembrane protein, a putative calcium-activated chloride channel encoded by anoctamin 10 (ANO10). The analysis of ANO10 by Sanger sequencing revealed three additional mutations: a homozygous mutation (c.1150_1151del [p.Leu384fs]) in a Serbian family and a compound-heterozygous splice-site mutation (c.1476+1G>T) and a frameshift mutation (c.1604del [p.Leu535X]) in a French family. This illustrates the power of using initial homozygosity mapping with next-generation sequencing technology to identify genes involved in autosomal-recessive diseases. Moreover, identifying a putative calcium-dependent chloride channel involved in cerebellar ataxia adds another pathway to the list of pathophysiological mechanisms that may cause cerebellar ataxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号