首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

2.
Questions: Do the number, duration and magnitude of growth releases following formation of natural, fine‐scale canopy gaps differ among shade‐tolerant Thuja plicata, Tsuga heterophylla and Abies amabilis? What is the relative importance of tree‐level and gap‐level variables in predicting the magnitude and duration of releases? What does this tell us about mechanisms of tree species coexistence in such old‐growth forests? Location: Coastal British Columbia, Canada. Methods: We estimated the timing of formation of 20 gaps using dendroecological techniques and extracted increment cores from all three species growing around or within gaps. Using a species‐ and ecosystem‐specific release‐detection method, we determined the number of trees experiencing a release following gap formation. We quantified the duration and magnitude of individual releases and estimated the influence of tree‐level and gap‐level variables on these release attributes. Results: Eighty‐seven per cent (304 of 348) of all trees experienced a release following gap formation. T. heterophylla and A. amabilis experienced higher magnitude and longer duration releases than T. plicata. The effect of diameter on the duration of releases varied among species, with T. heterophylla and A. amabilis experiencing decreasing, and T. plicata experiencing increasing, duration of releases with increasing diameter. The effect of growth rate prior to a release on the magnitude of releases varied among trees of different diameters, with the slowest growing and smallest individuals of all species experiencing the most intensive releases. Conclusions: Our results provide detailed information on the number, duration and magnitude of growth releases of the above three species following gap formation. Differences in response to canopy gaps suggest differences in how these species ascend to the canopy strata. T. plicata may be less dependent on gaps to reach the canopy. Differing strategies for ascending to the canopy strata may be important in facilitating coexistence of these three species in old‐growth forests of coastal British Columbia.  相似文献   

3.
Questions : How do gap abundance and the spatial pattern of trees and snags change throughout stand development in Picea mariana forests? Does spatial pattern differ among site types and structural components of a forest? Location : Boreal forests dominated by Picea mariana, northern Quebec and Ontario, Canada. Methods : Data on the abundance, characteristics and spatial location of trees, snags and gaps were collected along 200 m transects at 91 sites along a chronosequence. Spatial analyses included 3TLQV, NLV and autocorrelation analysis. Non‐parametric analyses were used to analyse trends with time and differences among structural components and site types. Results : Gaps became more abundant, numerous and more evenly distributed with time. At distances of 1–4 m, tree cover, sapling density and snag density became more heterogeneous with time. Tree cover appeared to be more uniform for the 10–33 m interval, although this was not significant. Patch size and variance at 1 m were greater for overstorey than for understorey tree cover. Snags were less spatially variable than trees at 1 m, but more so at intermediate distances (4–8 m). Few significant differences were found among site types. Conclusions : During stand development in P. mariana forest, gaps formed by tree mortality are filled in slowly due to poor regeneration and growth, leading to greater gap abundance and clumping of trees and snags at fine scales. At broader scales, patchy regeneration is followed by homogenization of forest stands as trees become smaller with low productivity due to paludification.  相似文献   

4.
Abstract. Question: Which are the structural attributes and the history of old‐growth Fagus forest in Mediterranean montane environments? What are the processes underlying their structural organization? Are these forests stable in time and how does spatial scale affect our assessment of stability? How do these forests compare to other temperate deciduous old‐growth forests? Location: 1600–1850 m a.s.l., Fagus forest near the tree line, central Apennines, Italy. Methods: An old‐growth Fagus forest was studied following historical, structural and dendroecological approaches. History of forest cover changes was analysed using aerial photographs taken in 1945, 1954, 1985 and 1994. The structural analysis was carried out in the primary old‐growth portion of the forest using 18 circular and two rectangular plots. Dendroecological analyses were conducted on 32 dominant or co‐dominant trees. Results: These primary old‐growth Fagus remnants consist of four patches that escaped logging after World War II. Both living and dead tree components are within the range of structural attributes recognized for old‐growth in temperate biomes. Dendroecological analyses revealed the roles of disturbance, competition and climate in structuring the forest. We also identified a persistent Fagus community in which gap‐phase regeneration has led to a mono‐specific multi‐aged stand at spatial scales of a few hectares, characterized by a rotated‐sigmoid diameter distribution. Conclusion: Even at the relatively small spatial scale of this study, high‐elevation Apennine Fagus forests can maintain structural characteristics consistent with those of old‐growth temperate forests. These results are important for managing old‐growth forests in the Mediterranean montane biome.  相似文献   

5.
Question: This study evaluates how fire regimes influence stand structure and dynamics in old‐growth mixed conifer forests across a range of environmental settings. Location: A 2000‐ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 ‐ 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9–17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests.  相似文献   

6.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

7.
Question: Are canopy gap dynamics responsible for driving the structural and compositional changes that have occurred over a 26‐year period in a mature Quercus forest remnant? Location: Dobbs Natural Area, an unlogged 3.6‐ha forest preserve in west‐central Indiana, USA. Methods: We analyzed mapped permanent plot data for a site that illustrates a trend common in Quercus‐dominated forests in eastern North America, where recruitment of new stems is dominated by mesophytic, shade‐tolerant species such as Acer saccharum, rather than Quercus. We developed a GIS database from stand census measurements taken in 1974 and 2000, employing it to conduct tree‐by‐tree comparisons that allow direct determination of ingrowth, mortality and survivorship, and to relate the spatial patterns of subcanopy dynamics to canopy gap occurrence. Results: The re‐census shows modest changes in canopy composition, but much greater turnover in the subcanopy. Nearly half of all individuals originally present died; much of this mortality resulted from a major decline in subcanopy Ulmus americana. While overall density remained fairly constant, the subcanopy experienced substantial ingrowth of shade‐tolerant Acer saccharum, Fagus grandifolia, and Tilia americana. Canopy gaps, although forming at rates in the upper range of regional averages, did not significantly benefit subcanopy populations of Quercus spp. or most other taxa with limited shade tolerance. Conclusions: Canopy gaps play a minor role in driving the recent demographic trends of this stand. The spatial and temporal scales of light availability in gaps do not support regeneration of most shade‐intolerant species. Compositional change parallels a historical shift in light regimes.  相似文献   

8.
Question: Two questions about within‐stand spatial variability are addressed in this paper. How does species richness of tree regeneration respond to small‐scale ecological gradients, and what effect does natural Abies balsamea abundance have on the species richness of other tree regeneration? Location: A long‐term, gap‐silviculture experiment, Acadian mixed‐wood forest, Maine, USA. Methods: Eight stands treated with and without gap harvesting were sampled to capture sub‐stand heterogeneity of understorey tree regeneration concurrently with patterning of local stand conditions. Spatial and non‐spatial models were developed to test the relationships between two response variables [species richness of small (height ≥0.1 m, but <0.75 m) and large (height ≥0.75 m, but <1.4 m) regeneration] and five explanatory variables (depth to water table, percentage canopy transmittance, A. balsamea regeneration density, and overstorey basal area and species richness). Results: Despite high unexplained variance for all models, consistent associations among variables were found. Negative associations were found between: (1) the species richness of small regeneration and A. balsamea regeneration density and (2) the species richness of large regeneration and overstorey basal area. Positive associations were found between: (1) the species richness of small regeneration and both overstorey basal area and species richness and (2) the species richness of small and large regeneration and canopy transmittance. Conclusions: Promoting tree species diversity in Acadian mixed‐wood stands may not be achievable through the use of gap‐harvesting alone if the density of understorey Abies balsamea is not reduced either naturally or through silvicultural intervention.  相似文献   

9.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances.  相似文献   

10.
Abstract. The fragmentation and deterioration of old‐growth forest habitat by modern forestry have become a major threat to species diversity in Fennoscandia. In order to develop a conservation strategy for the remaining diversity it is essential to identify the existing diversity and to develop appropriate conservation and monitoring programs. For these purposes indicators of conservation value for administrative prioritization are required. This study examines the predictability of plant and fungal species richness on two spatial scales on 46 isolated old‐growth forest islands (0.17 ‐ 12 ha) in a forest‐wetland mosaic. We explore (1) to what extent area, isolation and stand structure variables can explain the variation in species richness and (2) if richness patterns of individual species groups correlate. Isolation showed no relation to species richness. Area explained 50 ‐ 70% of the variation in total species richness and was positively related to the density of crustose lichens and Red‐list species in island interiors. Stand structure variables explained 28 ‐ 66% of the residual variation in total species richness after controlling for island size, and 15 ‐ 73% of the variation in density of species in island interiors. The highest predictability of species richness was found among substrate‐specific fungi and Red‐list species. Different stand structure variables were found to explain richness in the different species groups, and only among a few species groups species richness correlated. Thus, species richness of one single species group is unlikely to be a good indicator for total biodiversity. The results show that measurements of stand size and stand structure variables may be a strong complementary tool, and sometimes a substitute to extensive species inventories when one aims to estimate and monitor plant and fungal species diversity in old‐growth Picea abies forests.  相似文献   

11.
Questions: What influence do management practices and previous tree and shrub stand structure have on the occurrence and development of natural regeneration of Pinus sylvestris in Mediterranean mountain forests? How are the fine‐scale and environmental patterns of resources affected and what impact does this have on the distribution of the regeneration? Location: A Pinus sylvestris Mediterranean mountain forest in central Spain. Methods: Upperstory trees and regeneration (seedlings and saplings) were mapped in four 0.5‐ha plots located in two types of stand with different management intensities (even‐aged and uneven‐aged stands). Environmental variables were recorded at the nodes of a grid within the plots. The relationships between the upperstory and regeneration were evaluated by bivariate point pattern analysis; redundancy analysis ordination and variation partitioning were performed to characterize regeneration niches and the importance of the spatial component. Results: Seedlings and saplings presented a clumped structure under both types of management and their distribution was found to be related to the spatial distribution of favourable microsites. Regeneration was positively related to conditions of partial cover with high soil water content during the summer. More than half of the explained variance was spatially structured in both types of stand. This percentage was particularly high in the even‐aged stands where the pattern of regeneration was highly influenced by the gaps created by harvesting. Conclusions: The spatial distribution of the tree and shrub upperstory strongly influences regeneration patterns of P. sylvestris. Current management practices, promoting small gaps, partial canopy cover and moderate shade in even‐aged stands, or favouring tree and shrub cover in the case of uneven‐aged stands, appears to provide suitable conditions for the natural regeneration of P. sylvestris in a Mediterranean climate.  相似文献   

12.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

13.
Abstract. We studied the characteristics of understorey regeneration on two sites with different fire history in a mature Pinus sylvestris forest in eastern Finland. The study area was a 4‐ha plot, which was divided into two parts based on fire history analysis. In one part the last fire event was a stand‐replacing fire in the early 19th century, after which the whole stand regenerated, while the other part of the study plot was subsequently burnt by a surface fire in 1906. Understorey P. sylvestris individuals were much more abundant in the area of the 1906 burn compared to the old burn. In both areas the size frequency distribution of living trees was bimodal, with frequency peaks at the < 5 cm and 30–150 cm height classes. In the old burn small understorey trees were mainly associated with microsites created by treefall disturbances while in the 1906 burn most small understorey trees occurred on vegetation‐covered microsites. This indicates that with increasing time since last fire establishment of new understorey trees becomes more restricted by the availability of microsites created by treefall disturbances. In both areas the proportion of vigorous small understorey trees was highest on decayed wood. In the older burn uprooted pits and mounds also had a significant proportion of healthy small understorey trees, while the majority of trees classified as seriously weakened or dying were growing on microhabitats characterized by undisturbed vegetation. Ripley's K‐function analyses showed that spatial distribution of understorey trees was clustered in both areas in all microsite types and clustering at small scales was most pronounced in understorey trees growing in uprooted spots or in association with decayed wood. The bivariate analysis showed a significant repulsion effect between large trees and understorey trees at intermediate spatial scales, indicating that competition had an effect on understorey tree distribution and this effect was more pronounced in the younger burn. The analysis suggests that in Pinus sylvestris forests the abundance, quality and spatial pattern of understorey tree population may vary considerably as a function of disturbance history.  相似文献   

14.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

15.
Abstract 1. The hypothesis that the habitat‐scale spatial distribution of the Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1‐m2 quadrats placed within the flood‐plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m. 2. Apache cicadas were spatially aggregated in high‐density clusters averaging 3 m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non‐spatial correlation analysis. No non‐spatial association between cicada density and saltcedar canopy cover was detected. 3. Tests for spatial cross‐correlation using the bivariate IYZ indicated the presence of a broad‐scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill‐over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture. 4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad‐scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.  相似文献   

16.
Wild et al. (2014, Journal of Vegetation Science 25: 1327–1340) document persistent effects of the spatial distribution of canopy trees on the distribution of regeneration following stand‐replacing disturbance in montane Norway spruce forests. The authors suggest a simple physical process for these legacy effects – the accumulation of winter‐dispersed seeds in ‘tree‐wells’ with lower snow depth around the trunks of living and recently dead trees.  相似文献   

17.
Questions: 1. Is there a trade‐off between gap dependency and shade tolerance in each of the life‐history stages of three closely related, coexisting species, Acer amoenum (Aa), A. mono (Am) and A. rufinerve (Ar)? 2. If not, what differences in life‐history traits contribute to the coexistence of these non‐pioneer species? Location: Ogawa Forest Reserve, a remnant (98 ha), species‐rich, temperate deciduous forest in central Japan (36°56’ N, 140°35’ E, 600 ‐ 660 m a.s.l.). Methods: We estimated the demographic parameters (survival, growth rate and fecundity) by stage of each species growing in gaps and under closed canopy through observations of a 6‐ha permanent plot over 12 years. Population dynamics were analysed with stage‐based matrix models including gap dynamics. Results : All of the species showed high seedling and sapling survival rates under closed canopies. However, demographic parameters for each growth stage in gaps and under closed canopies revealed inter‐specific differences and ontogenetic shifts. The trade‐off between survival in the shade and growth in gaps was detected only at the small sapling stage (height < 30 cm), and Ar had the highest growth rate both in the shade and in the gaps at most life stages. Conclusions: Inter‐specific differences and ontogenetic shifts in light requirements with life‐form differences may contribute to the coexistence of the Acer species in old‐growth forests, with Aa considered a long‐lived sub‐canopy tree, Am a long‐lived canopy tree, and Ar a short‐lived,‘gap‐phase’ sub‐canopy tree.  相似文献   

18.
Abstract. We asked whether forest structure and understory light environments across a tropical moist forest chronosequence followed predictions of a 4‐phase model of secondary succession (establishment, thinning, transition and steady‐state) and whether seedling density and diversity were functions of light availability as predicted by this model. Using aerial photographs, we identified eight second‐growth stands (two each aged ca. 20, 40, 70, and 100 yr) and two old‐growth stands within Barro Colorado Nature Monument, Panama. Trees and seedlings were sampled in nested, contiguous quadrats in 2 160‐m transects in each stand. Light was measured as percent transmittance of diffuse photosynthetically active radiation (TPAR) at each seedling quadrat and by estimation of percent total incident radiation during the growing season from hemispherical canopy photographs. Basal area, tree density, and canopy height followed predictions of the 4‐phase model. Percent total radiation, but not TPAR, declined with stand age as did seedling density. While seedlings were more likely to occur in quadrats at higher light levels, much variation in seedling density was not related to light availability. Seedling patch sizes were small irrespective of light patches, estimated as semivariance ranges. Seedling species richness was a function of seedling density; estimates of species diversity unbiased by density did not vary systematically as a function of stand age. Proximate seed sources, efficient dispersal mechanisms, and appropriate establishment conditions can promote establishment of species‐rich communities early in successions of heterogeneous tropical moist forest.  相似文献   

19.
Assessment of forest responses to climate change is severely hampered by the limited information on tree death on short temporal and broad spatial scales, particularly in tropical forests. We used 1‐m resolution panchromatic IKONOS and 0.7‐m resolution QuickBird satellite data, acquired in 2000 and 2002, respectively, to evaluate tree death rates at the La Selva Biological Station in old‐growth Tropical Wet Forest in Costa Rica, Central America. Using a calibration factor derived from ground inspection of tree deaths predicted from the images, we calculated a landscape‐scale annual exponential death rate of 2.8%. This corresponds closely to data for all canopy‐level trees in 18 forest inventory plots, each of 0.5 ha, for a mostly‐overlapping 2‐year period (2.8% per year). This study shows that high‐spatial‐resolution satellite data can now be used to measure old‐growth tropical rain forest tree death rates, suggesting many new avenues for tropical forest ecology and global change research.  相似文献   

20.
靳程  杨永川  周礼华  龙宇潇  陈媛 《广西植物》2023,43(8):1437-1445
金钱松是中国最具国际影响力的古老孑遗植物之一,其面临生境破碎化、种群分散以及个体数量减少的种种威胁。幸运的是,已有研究指出村落风水林为金钱松自然种群提供了庇护,然而,村落风水林到底如何发挥保护效用,尚待深入探索。因此,该研究通过野外调查和社区访谈的方法对所有金钱松自然种群的更新现状、保护行为和干扰程度进行全面调查,并以林家塘村金钱松自然种群为例揭示金钱松村落风水林保护和管理模式。结果表明:(1)相较于其他生境类型,村落风水林生境中金钱松自然种群径级结构连续,幼苗密度较高;(2)水口林、墓地林和阳基树承载的风水与禁忌文化是村落风水林能够有效保护金钱松自然种群的内在原因;(3)新时代乡村旅游业的发展进一步促进了村民对金钱松村落风水林的保护。综上所述,在乡村振兴背景下,基于风水和禁忌文化的村落风水林保护和管理模式是金钱松自然种群保护的绝佳模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号