首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Amicronucleate cells of Paramecium caudatum, whose micronuclei have been artifically removed by micropipetting, are characterized by the appearance of a deciliated area at the posterior part of the buccal opening. These cells form food vacuoles at a slightly lower rate than micronucleate cells. Their mean interfission time is longer than that in micronucleates. The exconjugants of amicronucleate cells can not form food vacuoles and eventually die witout fission, though conjugation proceeds normally in them as well as in their micronucleate mate. The oral apparatus of amicronucleate exconjugants seems to be shallower than that of micronucleates. The membranellar cilia, therefore, can be seen through the buccal overture by scanning electron microscope. The results obtained from the cross of micronucleate and amicronucleate strains and from the induction of autogamy in amicronucleate strains suggest that the micronucleus has a primary role in developing the normal oral apparatus after nuclear reorganization.  相似文献   

3.
It is known that the germinal micronucleus at the stages of gametogenesis and/or fertilization has an indispensable function for the postconjugational development of oral apparatus (stomatogenesis) in Paramecium caudatum. To determine whether this function is due to some specific genes in the micronucleus, postconjugational stomatogenesis was examined in the conjugation of haploid and hypohaploid cells. Haploid clones were obtained by conjugation between amicronucleate cells and diploid micronucleate cells. After conjugation between these haploid clones or between the haploid clones and amicronucleate clones, we succeeded in obtaining hypohaploid clones that have various types of nullisomic micronuclei. If a few genes in the micronucleus control postconjugational stomatogenesis, some hypohaploid micronuclei should undergo stomatogenesis normally, but others should not. In the present work, however, almost all the hypohaploid micronuclei developed the oral apparatus and formed food vacuoles. We can apparently rule out the possibility that a few specific genes of the micronucleus are required for postconjugational stomatogenesis in Paramecium caudatum, unless selection operates to retain the chromosomes with the essential gene(s). Dev. Genet. 23:142–150, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Removal of the micronuclei of Paramecium tetraurelia and Paramecium jenningsi by micropipetting generates amicronucleate cell lines. These cell lines go through a period of growth depression for several dozen fissions, but they gradually recover. Amicronucleate cells in the depression period characteristically exhibit abnormal oral development, particularly reduction in the length of the buccal cavity and an abnormal pattern of the oral membranelles. To test the notion that the macronucleus is involved in the recovery of amicronucleate cell lines, DNA demethylation drugs were administered to amicronucleates in the depression period. After at least 4 fissions, the treated amicronucleates were assessed for their progress in recovery by scoring the proportion of cells with normal oral membranelles. Cvtidine analogues which demethylate cytosine specifically at the 5 position, namely 5-azacytidine, 5-aza-2'- deoxycytidine and 5-fluoro-2'-deoxycytidine. promoted recovery of the amicronucleates. Cytidine, 6-azacytidine, 2'-fluoro-2'-deoxy-cytidine and cytosine-β-D-arabinofuranoside did not. These results suggest that (i) 5-methylcytosine is present in the macronucleus of these Paramecium species, probably in small amounts and (ii) recovery of amicronucleates involves demethylation of macronuclear DNA. This implies that in normal cells the micronuclei are involved in maintaining the macronuclear DNA in a methylated state and hence the inactivation of the macronuclear sequences that are to be employed for stomatogenic recovery. A general mechanism for the control of gene expression may therefore be employed for the regulation of specific sequences.  相似文献   

5.
BACKGROUND: DNA replication stress often induces DNA damage. The antitumor drug hydroxyurea (HU), a potent inhibitor of ribonucleotide reductase that halts DNA replication through its effects on cellular deoxynucleotide pools, was shown to damage DNA inducing double-strand breaks (DSBs). Aphidicolin (APH), an inhibitor of alpha-like DNA polymerases, was also reported to cause DNA damage, but the evidence for induction of DSBs by APH is not straightforward. Histone H2AX is phosphorylated on Ser 139 in response to DSBs and one of the protein kinases that phosphorylate H2AX is ataxia telangiectasia mutated (ATM); activation of ATM is through its phosphorylation of Ser 1981. The present study was undertaken to reveal whether H2AX is phosphorylated in cells exposed to HU or APH and whether its phosphorylation is mediated by ATM. MATERIALS AND METHODS: HL-60 cells were treated in cultures with 0.1-5.0 mM HU or 1-4 muM APH for up to 5 h. Activation of ATM and H2AX phosphorylation was detected immunocytochemically using Ab specific to Ser1981-ATM or Ser 139-H2AX epitopes, respectively, concurrent with measurement of cellular DNA content. RESULTS: While exposure of cells to HU led to H2AX phosphorylation selectively during S phase and the cells progressing through the early portion of S (DI = 1.1-1.4) were more affected than late-S phase (DI = 1.6-1.9) cells, ATM was not activated by HU. In fact, the level of constitutive ("programmed") ATM phosphorylation was distinctly suppressed, in all phases of the cell cycle, at 0.1-5.0 mM HU. Cells' exposure to APH also resulted in H2AX phosphorylation at Ser139 with no evidence of ATM activation, and as in the case of HU, the early-S cells were more affected than the late-S phase cells. The rise in frequency of apoptotic cells became apparent after 2 h of exposure to HU or APH, and all apoptotic cells had markedly elevated levels of both H2AX-Ser139 and ATM-Ser1981 phosphorylation. CONCLUSIONS: The lack of correlation between H2AX phosphorylation and ATM activation indicates that protein kinase(s) other than ATM (ATR and/or DNA-dependent protein kinase) are activated by DSBs induced by replication stress. Interestingly, HU inhibits the constitutive ("programmed") level of ATM phosphorylation in untreated cells. However, DNA fragmentation during apoptosis activates ATM and dramatically increases level of H2AX phosphorylation.  相似文献   

6.
This report introduces a new system in the study of programming of genomic function during development of the somatic nucleus of Paramecium tetraurelia. Previous works have established a definite, but replaceable, role of the germ nuclei (micronuclei) in oral development in the asexual cycle; their removal from the cell generates viable amicronucleate cell lines, which characteristically suffer a transient period of growth depression marked by abnormal oral development. Such cell lines gradually recover, showing that a compensatory mechanism is activated in the absence of the germ nuclei to bring the cell back to near-normal. To test the notion that the somatic nucleus (macronucleus) is involved in this compensation, cells possessing micronuclei were treated with 5-azacytidine during sexual reproduction when new somatic nuclei develop. These cells were then propagated asexually for a number of fissions in the absence of the drug, and thereafter micronuclei were removed from them. The amicronucleate cell lines generated in this manner clearly did not suffer a depression as severe as the untreated controls did in terms of growth rate and oral development, and they recovered much sooner. This supports the notion that the somatic nucleus is the physical basis of the compensatory mechanism. This study suggests that the stomatogenic sequences in question normally become repressed in the somatic nucleus developing in sexual reproduction, and that 5-azacytidine administered to the cells at this time could alter this programme which then persists during subsequent asexual propagation. The possibility that the somatic nucleus is programmed by methylation of cytosine at the 5' position is discussed.  相似文献   

7.
During Tetrahymena conjugation gamic nuclei (pronuclei) are produced, reciprocally exchanged, and fused in each mate. The synkaryon divides twice; the two anterior nuclei develop into new macronuclei while the two posterior nuclei become micronuclei. The postzygotic divisions were blocked with the antitubulin drug nocodazole (ND). Then pronuclei (gamic nuclei) developed directly into macronuclear anlagen (primordial macronuclei), inducing amicronucleate cells with two anlagen, or, rarely, cells with one anlagen and one micronucleus. ND had a similar effect on cells that passed the first postzygotic division inducing amicronucleate cells with two anlagen, while cells treated with ND at the synkarya stage produced only one large anlage. Different intracytoplasmic positioning of the nuclei treated with ND (pronuclei, synkarya and two products of the first division) shows that most of cell cytoplasm is competent for inducing macronuclear development. Only posteriorly positioned nuclei--products of the second postzygotic division--remain micronuclei. The total cell DNA content, measured cytophotometrically in control and in ND-induced amicronucleate conjugant cells with one and two anlagen, was similar in all three samples at 12 h of conjugation. Eventually, at 24 h this content was about 2 pg (8 C) per anlagen both in nonrefed control and in amicronucleate exconjugants. Therefore "large" nuclei developing in the presence of ND were true macronuclear anlagen.  相似文献   

8.
This study examines the relationship between unbalanced growth, DNase II activity, DNA breakage and cell survival during the exposure of L5178Y cells to hydroxyurea (HU), excess thymidine (dThR) or HU with excess of four deoxyribonucleosides (dNR). It has been found that in the cells arrested by HU or dThR, but still appearing viable with the trypan blue exclusion test, Protein/DNA imbalance and abnormal cell volume are correlated with enhancement of DNase II activity in the cells and in the medium and with moderate increase in parental DNA breakage. The incidence of DNA breaks was markedly potentiated in the presence of non-toxic concentration of caffeine (CAF), used to inhibit DNA repair. In HU+dNR arrested cells, in which unbalanced growth was abolished, enhancement of DNase II activity and of DNA breakage in the presence or absence of CAF was substantially prevented. Comparison of posttreatment cell survival in the presence or absence of CAF confirmed the differential effect of CAF: while in HU or dThR arrested cells the presence of CAF induced marked cell killing, in HU+dNR arrested cells the influence of CAF was negligible. Only a slight effect of CAF was observed in cells in which dThR-induced arrest and unbalanced growth were reversed by deoxycytidine (dCR) addition. It is suggested that the involvement of DNA nucleases in the unbalanced growth-induced overproduction of numerous hydrolytic enzymes, with their progressive leakage through the cell membranes, can lead to progressive DNA digestion. DNA breaks produced in this way are normally, at least partly, repaired. Concomitant exposure of such cells to DNA repair inhibitor can markedly enhance the level of breaks, leading to potentiation of unbalanced growth-induced cell killing.  相似文献   

9.
An amicronucleate clone of Tetrahymena pyrijormis has been found among the asexual progeny of irradiated cells of strain EU 6000 (variety 6, mating type I). Log-phase cells of this clone, designated EU 6525, have a mean generation time (6.0 hr) longer than that of the micronucleate strain, EU 6000 (2.9 hr). Further irradiation studies of strain EU 6000 indicate that the recovery of viable amicronucleate populations is rare although many amicronucleate cells are found among surviving progeny.1 Attempts to introduce micronuclei into amicronucleate cells of strain EU 6525 by conjugation have been made. Micronucleate lines are obtained from amicronu create pair members only in low frequency. These results, considered together with those of other workers, suggest that some change in the state of the cell, additional to the physical loss (or gain) of the micronucleus, must occur before viable amicronucleate clones can be obtained from micronucleate cells, or before amicronucleate cells can produce viable micronucleate lineages. An alteration in mean generation time may be a reflection of this change, or it may simply be a direct consequence of micronuclear removal. The results further imply that the ciliate micronucleus unquestionably contributes information to the cell during asexual growth and reproduction.  相似文献   

10.
The two complementary mating types, O and E, of Paramecium tetraurelia are normally inherited cytoplasmically. This property has generally been interpreted to indicate the presence of cytoplasmic factors that determine macronuclear differentiation towards O or E. In these macronuclear-cytoplasmic interactions, the micronuclei were held to be unbiased and the determination to be established in the course of macronuclear development. In order to ascertain whether the micronuclei were actually neutral, amicronucleate clones were needed and a method to produce them was developed. In crosses between amicronucleate clones and normal micronucleate clones, we have observed regular deviations from cytoplasmic inheritance: the commonest deviation is that most O amicronucleate cells become E when they receive a micronucleus from an E partner. The data can be interpreted by assuming that the micronuclei are predetermined and that the apparent "cytoplasmic" inheritance of the two mating types is due, in E cells, to E-determining factors present in the cytoplasm and in the nucleus; and, in O cells, to O-determining factors present only or mainly in the nucleus.  相似文献   

11.
念珠伪角毛虫小核体功能初步研究   总被引:5,自引:1,他引:4  
为了研究念珠伪角毛虫的小核是否具有及具有怎样的体功能,采用显微切割手术去小核并建立无小核细胞系。经蛋白银染色鉴定,无小核细胞系群体中大多数细胞的形态结构存在缺陷:口围带的部分小膜缺损或排列紊乱,大核的数目和形态也不正常。这表明,念珠伪角毛虫的小核对于保持口围带结构的完整性以及大核的数目和形态结构的稳定性起着明确的作用。  相似文献   

12.
Paramecium caudatum loses the ability to form food vacuoles at the crescent stage of the micronucleus from 5 to 6 hr after the initiation of conjugation and regains it immediately after the third division of the zygotic nucleus. To assess the micronuclear function in the development of the oral apparatus after coniugation, prezygotic micronuclei was removed from cells at various stages of conjugation, and their ability to form food vacuoles were examined. (1) When all of the prezygotic micronuclear derivatives were eliminated before the stage of formation of the zygotic nucleus, the exconjugant did not regain its ability. (2) When a zygotic nucleus or postzygotic nuclei were removed, in some cases the cell formed as many food vacuoles as did nonoperated cells after conjugation, while in other operated cells the number of food vacuoles was subnormal. (3) When a micronucleus from a cell at vegetative phase (G1) was transplanted into a cell of an amicronucleate mating pair at the stage between 8 and 9 hr after the initiation of conjugation, the implanted cell regained the ability to form food vacuoles. However, no cell regained the ability when the implantation was carried out within 1 hr after the separation of the mates. The results show that the micronucleus plays an indispensable role in the development of the oral apparatus at the stages of exchange of gametic nuclei and fertilization and that the micronucleus transplanted from asexual cells can fulfill this function. On the other hand, removal of the macronucleus from exconjugants showed that the maternal macronucleus also has an indispensable function in regaining the ability to form food Vacuoles. © 1992 Wiley-Liss, Inc.  相似文献   

13.
SYNOPSIS. C* is a structurally heterogeneous clone containing normal and crinkled cells which are amicronucleate. Selection for structurally normal subclones did not result in the genesis of a diploid cell line. The stem cell of C* appears to be aneuploid with about 4 chromosomes instead of the usual 10, and from this line cells with fewer chromosomes or without micronuclei are generated. Only cells containing a portion of the micronucleus are viable. Amicronucleate cells die. They also mate very poorly. Consequently, little difference is observed between subclones having different proportions of amicronucleate cells in their ability to generate viable offspring by genomic exclusion. Our observations are discussed in terms of the separate functions of micronucleus and macronucleus and ways in which the nuclei seem to interact.  相似文献   

14.
The micronucleus from vegetative cells of one mating type (O or E) in Paramecium tetraurelia was transplanted by micropipet into amicronucleate cells of opposite mating type (E or O). When autogamy was induced in the recipient cells, they developed new macronuclei and micronuclei derived from the transplanted micronucleus and usually expressed the same mating type as the recipients. The results indicate that micronuclei in the asexual phase may be undetermined for mating type. Recipient E cells in which the macronucleus had been previously removed were transplanted with a whole macronucleus from an O cell. Their mating type was soon transformed E to O before the occurrence of autogamy, and remained O after autogamy. This demonstrates that the transplanted macronucleus determined the O cytoplasmic state to determine the developing zygotic macronucleus for mating type O. It is unlikely that the micronucleus is determined for mating type in O or E cell during the asexual cycle.  相似文献   

15.
ABSTRACT In the sexual process, amicronucleate Paramecium tetraurelia , unlike micronucleates, fail to produce an oral apparatus, but resorb the pre-existing one. Exceptions were found in some amicronucleate cell lines in which about 1% of the cells possessed oral structures, including pieces of oral membranelles, sometimes complete with buccal cavity, after autogamy or conjugation. By following oral development in the sexual process in some detail, the present study supports the view that these oral structures are derived from the pre-existing oral apparatus and not newly developed from the oral primordium. The possible involvement of the micronucleus and the pre-existing oral apparatus in oral resorption is discussed. The possession of a functional oral apparatus after the sexual process may open up a new evolutionary avenue to the amicronucleates.  相似文献   

16.
The binding of radioactively labeled lymphotoxin (LT) to both lymphotoxin-sensitive and -resistant cell clones was examined. The sensitive clone had a low- capacity, high-affinity ("specific") binding component, the curve of which closely followed the cytotoxicity curve of the lymphocyte mediator. The capacity of this binding component was calculated to be about 600 molecules of LT/cell. In addition, there was a low-affinity, high-capacity ("nonspecific") binding component. In striking contrast, the high-affinity, low-capacity ("specific") component was absent or greatly diminished from the resistant clone, whereas the low-affinity, high-capacity ("nonspecific") component was present at a similar level as in the sensitive cells.These binding characteristics closely resemble those observed by us and other investigators working with a variety of steroid hormones in steroid-sensitive and- resistant cell lines.  相似文献   

17.
By using the technique of nuclear transplantation in Paramecium [1], amicronucleate and renucleate clones were prepared in P. caudatum. The major differences between amicronucleate and micronucleate cells in the vegetative stage are elongation of cell cycle time, decrease in food vacuole formation, and shortening of the buccal cavity in the amicronucleate cells. These characteristics of amicronucleate cells are closely related with the absence of micronucleus, because all of these abnormalities were cured when the micronucleus was transplanted again into the amicronucleate. It is evident that the germinal micronucleus plays an important role not only during the sexual cycle but also in vegetative growth. Elongation of the cell cycle time in amicronucleates was also observed in P. bursaria and P. jenningsi.  相似文献   

18.
It has been known that, immediately after the third division of fertilization nucleus (synkaryon), nuclei localized near the posterior region of exconjugant are to be macronuclear anlagen and those near the anterior region are to be presumptive micronuclei in Paramecium caudatum. One of such posterior nuclei was transplanted into amicronucleate cell at vegetative phase in this work. The implanted nuclei were able to divide at every fission. Their DNA content was nearly equal to or less than ordinary micronuclei during vegetative phase. When conjugation was induced between clones obtained and amicronucleates, macronuclear anlagen developed from the division products of implanted nuclei and thereafter derivative caryonides were true to the marker gene of implanted nuclei. The results indicate that there was no intrinsic difference between nuclei localized anteriorly and those situated posteriorly in exconjugant. Differentiation of nuclei into macronucleus may be irreversible at the stage of anteroposterior localization of the nuclei. The role of nuclear division in differentiation may be only to transport the daughter nuclei into the cytoplasm/cortex differentiated anteroposteriorly.  相似文献   

19.
A hypodiploid strain of Tetrahymena thermophila has been obtained that shows arrest at the stage of condensed nuclei, corresponding to metaphase I of normal conjugants and induced arrest at meiotic metaphase I (i.e. at the stage of condensed, bivalent chromosomes) in its wt partner mate. The metaphase I arrested conjugants retained their old macronuclei and most of them underwent cell fusion, instead of separation of exconjugants. The doublets were viable and cortically integrated. When the arrest inducing strain was crossed to the haploid tester strain, the haploid micronuclei were arrested in the meiotic metaphase I as the diploid ones had been; the monovalent, chromosomes were condensed, the arms of sister chromatids were not separated, and they were not segregated. Separation of the arms of sister chromatids and disjunction of bivalent chromosomes were not prerequisite for the formation of microtubular spindles in those cells that were arrested in meiotic metaphase I. After re-feeding, the doublet cells resumed cell divisions, segregating two macronuclei and micronuclei at random. One macronucleus was derived from the arrest inducing strain and the other from the tester strain. Heterokaryon strains with macronuclei derived from the parental arrest inducing strain and with the micronucleus derived from the parental wt tester strain were obtained. Surprisingly, these heterokaryons did not induce meiotic arrest. Thus, the arrest in the melotic metaphase I was induced by the micronucleus and not by the macronucleus of the arrest inducing strain.  相似文献   

20.
The role of the micronucleus in the age-dependent increase in mortality after conjugation in Paramecium has been investigated using micronuclear transplantation. The clone of Paramecium caudatum used for this study had a lifespan of about 750 fissions. In this clone, the fission rate began to decrease about 450 fissions after conjugation. Mortality after selfing conjugation also began to appear at about 450 fissions and gradually increased with clonal age. Cells at about 650 fissions showed 10–70% survival after selfing conjugation but when their micronuclei were transplanted into amicronucleate cells of about 450 fissions, the progeny survival increased to 70–90%. When micronuclei from cells 700–750 fissions old were transplanted into amicronucleate cells of 100–150 fissions, however, increase in progeny survival was very rare. The results indicate that micronuclei in cells up to the age of 650 fissions can function normally if the cytoplasmic environment is young.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号