首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
研究了马铃薯吸附式干燥条件及其对品质的影响。实验测定了干燥介质温度、相对湿度、流速以及粒度对马铃薯干燥制品复水率和维生素C含量的影响;用扫描电镜对马铃薯干燥前后的内部及表面组织结构进行了分析;采用均匀设计实验优化马铃薯吸附式低温干燥工艺条件;考察了热风干燥、冷冻干燥对马铃薯粒品质的影响,并与吸附干燥结果进行了比较。结果表明:当吸附干燥介质的温度为19.3℃、相对湿度为2.0%、流速为0.341m.s-1和马铃薯立方型粒子边长2.0 mm时,马铃薯的复水率可达95.35%。吸附式干燥后的马铃薯中维生素C损失比热风干燥和冷冻干燥低,马铃薯内部细胞腔结构特征优于热风干燥。  相似文献   

2.
马铃薯吸附干燥特性及模型拟合   总被引:2,自引:0,他引:2  
在实验的基础上研究了马铃薯的干燥特性,考察了温度、湿度、风速和粒子大小对马铃薯的干燥特性的影响。对马铃薯的干燥特性进行模型拟合结果表明:马铃薯吸附式低温干燥过程分为调整、恒速和降速3个阶段。含水率从76.88%变化到65.44%这段为调整阶段;从65.44%变化到47.34%这段为恒速阶段,主要是去除非结合水;从47.34%降到27.7%为降速阶段,主要脱除非结合水及部分结合水,干燥速度下降。温度是影响干燥的主要因素,温度越高,湿度越小,介质流速快,干燥速度越快。Page模型能够较好地拟合马铃薯干燥过程的特性。  相似文献   

3.
真空冷冻干燥技术是将含水物料中的水冷冻成固态冰,在高真空条件下利用水的升华性能,使物料在较低温度脱水而达到干燥目的的一种干燥方法。本研究将对市售的胡萝卜、香菇进行真空冷冻干燥,通过控制冻干的最终温度以及达到终结温度后的冻干时间,比较冻干前后各批次果蔬中微生物的数量(包括细菌总数以及大肠菌群总数),得到果蔬冻干过程中冻干过程中微生物的变化规律。结果显示胡萝卜、香菇在冻干过程中微生物数量的变化与温度、干燥时间呈正相关,在终结温度为60℃,干燥时间为6 h的情况下,干品品相良好,并能成功抑制微生物的生长。  相似文献   

4.
米槠次生林转换成米槠人工幼林和米槠人工促进天然更新幼林(以下简称"人促幼林")后,以这三种森林类型为研究对象,连续监测每次降雨后地表径流量及径流水中可溶性有机碳(DOC)的含量及通量,比较不同森林类型观测结果的差异,并分析降雨对实验结果的影响。结果表明:米槠人工幼林单次产流量是米槠次生林的1.5—19.0倍,观测期间总径流量为5.9倍;米槠人促幼林单次径流量和总径流量均与米槠次生林无显著差异(P0.05)。观测期间米槠次生林、人工幼林、人促幼林径流水DOC浓度值范围为5.9—18.4 mg/L,4.3—13.5 mg/L和3.2—9.9 mg/L,米槠次生林径流水浓度均值(12.6 mg/L)分别是米槠人促幼林(7.6 mg/L)和米槠人工幼林(5.3 mg/L)的1.6和2.4倍。回归分析表明,径流水中DOC浓度与降雨前土壤含水率呈显著相关;降雨前土壤含水率20.8%是一个临界值,含水率低于20.8%时,径流水DOC浓度与降雨前含水率呈显著正相关(P0.05);高于20.8%时,径流水DOC浓度与降雨前土壤含水率呈显著负相关(P0.05)。米槠人工幼林地表径流DOC输出通量是米槠次生林的0.7—5.4倍,观测期间总输出通量为2.1倍;米槠人促林DOC单次通量和观测期间总通量均与米槠次生林差异不显著(P0.05)。三种森林类型DOC输出通量均与降雨量呈显著相关(P0.05)。可见,米槠次生林转变成米槠人工幼林后DOC输出浓度降低,但径流量显著增加,导致DOC输出通量增加;而转变成米槠人促幼林后DOC输出浓度也降低,但径流量并未增加,因而并未增加DOC输出通量。  相似文献   

5.
对野生发菜(Nostocflagelliforme Bom.et Flab)的膜脂(主要成分为类囊体膜脂)及其脂肪酸组成进行了测定分析.发菜的膜脂由单半乳糖甘油二酯(MGDG)、双半乳糖甘油二酯(DGDG)、磷酯酰甘油(PG)和硫代异鼠李糖甘油二酯(SQDG)组成,其酯酰基连接有棕榈酸(16:0)、十六碳烯酸(16:1)、硬脂酸(18:0)、油酸(18:1)、亚油酸(18:2)和亚麻酸(18:3)6种脂肪酸.发菜的不饱和脂肪酸含量可达总脂的73%,特别是16:1和18:3分别高达29%和34%,远远高于已报道的其他蓝藻,说明了发菜类囊体膜具有较强的抗逆性特点.同时还对复水30 min和复水后生长24 h的发菜膜脂及其脂肪酸组成进行了分析.结果表明,复水对野生发菜的膜脂及其脂肪酸组成没有显著影响,说明发菜的膜脂和脂肪酸组成在干燥-吸水过程中能保持很高的稳定性.  相似文献   

6.
以梗丝填充值为参考指标,在正交试验基础上,通过DOE试验设计,运用曲面响应法研究梗丝工艺参数对梗丝填充值的影响。在其它参数不变的前提下,试验结果表明,工艺气体温度、膨胀节蒸汽流量和入口含水率均对梗丝填充值有显著的影响;梗丝填充值最佳工艺参数值为入口含水率34.5%、工艺气体温度215℃,膨胀节蒸汽流量21000kg/h。在该条件下,梗丝填充值最高。  相似文献   

7.
以小粒咖啡(卡蒂姆P7963)为材料,研究连续2.5年不同施氮水平下周期性干旱胁迫后复水对小粒咖啡生长、产量、叶片光合特性和水氮生产力的影响.设灌水(周期性干旱胁迫后复水)和施氮2因素,4个灌水模式分别为充分灌水(IF-F:100%ET0+100%ET0,ET0为参考作物腾发量)、轻度干旱胁迫-复水(IL-F:80%ET0+100%ET0)、中度干旱胁迫-复水(IM-F:60%ET0+100%ET0)和重度干旱胁迫-复水(IS-F:40%ET0+100%ET0),3个施氮水平分别为高氮(NH:每次750 kg N·hm-2)、中氮(NM:每次500 kg N·hm-2)和低氮(NL:每次250 kg N·hm-2),分4次等量施用.结果表明: 小粒咖啡株高、茎粗、产量、水氮生产力受灌水和施氮影响显著,株高和茎粗与日序数呈S型曲线关系,干旱胁迫时小粒咖啡叶片光合作用显著下降,复水后大部分光合作用指标能不同程度恢复.与IF-F相比,IL-F干豆产量增加6.9%,而IM-F和IS-F干豆产量分别减少15.2%和38.5%;IL-F和IM-F水分利用效率分别增加18.8%和6.0%,而IS-F水分利用效率减少12.1%;IL-F氮肥偏生产力增加6.1%,而IM-F和IS-F氮肥偏生产力分别减少14.0%和36.0%.与NH相比,NM干豆产量和水分利用效率分别增加20.9%和19.3%,而NL分别减少42.4%和41.9%;NM和NL氮肥偏生产力分别增加81.4%和72.9%.与IF-FNH相比,IL-FNM干豆产量、水分利用效率和氮肥偏生产力分别增加37.6%、52.9%和106.4%.回归分析表明,灌水量为318 mm、施氮量为583 kg·hm-2时,干豆产量(2362 kg·hm-2)最大;灌水量为295 mm、施氮量为584 kg·hm-2时,水分利用效率(0.78 kg·m-3)最大,即产量和水分利用效率同时达到最大值时最接近IL-FNM水氮组合.因此,IL-FNM为小粒咖啡最佳的水氮组合模式.  相似文献   

8.
近年来,全球气温不断升高,亚热带部分地区夏季高温和临时性干旱现象日益显著,高温与干旱严重威胁着植物的生存与生长。本文通过设置不同的温度和土壤水分梯度,研究了高温与干旱复合胁迫及复水对构树幼苗光合特性和叶绿素荧光参数的影响。结果表明:高温干旱复合胁迫下,构树幼苗净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、最大荧光(Fm)、PSII最大原初光化学量子效率(Fv/Fm)呈现下降趋势,初始荧光(F0)呈上升趋势;复合胁迫对Pn、Gs、Tr的影响具有叠加效应;胞间CO2浓度(Ci)、Gs、Fm和Fv/Fm受温度影响显著(P0.05),Gs、Tr、F0受土壤水分影响显著(P0.05),而Pn和F0受温度和土壤水分双因素影响显著(P0.05);在25和33℃下,复水对胁迫具有一定的缓解作用,复水后光合特性和Fv/Fm有一定程度提升,对F0和Fm效果不明显。试验表明,复合胁迫对植物光合特性和叶绿素荧光参数的影响程度比单一胁迫大,且在一定温度范围内,复水对干旱胁迫具有缓解作用。  相似文献   

9.
制备高品质的紫淮山全粉,有利于拓宽紫淮山的消费途径和提升产品价值。本文考察了固液比、进料流量和冻结温度对紫淮山全粉水分含量、溶解度和花色苷含量的影响,通过四因素三水平正交试验,优化了紫淮山全粉喷雾冷冻干燥工艺,并对热风干燥、真空冷冻干燥、喷雾干燥、喷雾冷冻干燥这4种干燥方式制备的紫淮山全粉理化特性和抗氧化能力进行了比较。结果表明,紫淮山冷冻喷雾干燥的最佳工艺条件为进料流量25 mL/min、固液比1∶1、冻结温度-30℃,在此条件下得到的紫淮山全粉水分含量为3. 89%、溶解度为23. 12%、花色苷含量为13. 28 mg/100 g。干燥方式对紫淮山全粉的物理性质、营养成分、活性成分和抗氧化能力的影响显著。  相似文献   

10.
Xu R  Liu BY  Niu WZ 《生理学报》2002,54(2):154-158
实验应用常规微电极方法研究了在生理温度下 (36 5± 0 5℃ )降钙素基因相关肽 (calcitoningene relatedpeptide ,CGRP)对豚鼠心房肌细胞复极过程的影响及其与钾电流的关系。结果表明 :(1)CGRP(16nmol/L)可拮抗由钾通道阻断剂BaCl2 、4 AP引起的动作电位时间延长。 (2 )CGRP(16nmol/L)能够增加细胞外高钾 (18 5mmol/L)条件下心房肌慢反应动作电位的APA和Vmax,并缩短传导时间。 (3)CGRP(16nmol/L)能减弱甚至消除因并用CsCl (5mmol/L)和无钾灌流液诱发的触发活动。 (4)CGRP对动作电位复极过程的作用因温度条件而异。在生理温度下 ,CGRP(5、16和 5 0nmol/L)能够使动作电位平台抬高 ,缩短动作电位复极化 2 0 %、5 0 %和 90 %时程。其中 ,对动作电位复极化 2 0 %、5 0 %时程的作用呈剂量依赖性。而在室温下 (2 5 5± 2 1℃ ) ,CGRP使动作电位复极化 2 0 %、5 0 %和90 %时程延长。上述结果提示 ,CGRP对心房肌细胞具有多重电生理效应 ,其中生理温度下CGRP对钾电流的促进作用在动作电位的改变中占重要地位 ,今后有必要进一步研究CGRP对各种钾通道的作用  相似文献   

11.
Intermittent drying of bioproducts--an overview   总被引:1,自引:0,他引:1  
Unlike the conventional practice of supplying energy for batch drying processes at a constant rate, newly developed intermittent drying processes employ time-varying heat input tailored to match the drying kinetics of the material being dried. The energy required may be supplied by combining different modes of heat transfer (e.g. convection coupled with conduction or radiation or dielectric heating simultaneously or in a pre-selected sequence) in a time-varying fashion so as to provide optimal drying kinetics as well as quality of the bioproduct. This is especially important for drying of heat-sensitive materials (such as foods, pharmaceutical, neutraceutical substances, herbs, spices and herbal medicines). Intermittent heat supply is beneficial only for materials which dry primarily in the falling rate period where internal diffusion of heat and moisture controls the overall drying rate. Periods when little or no heat is supplied for drying allow the tempering period needed for the moisture and heat to diffuse within the material. As the moisture content increases at the surface of the biomaterial during the tempering period, the rate of drying is higher when heat input is resumed. It is possible to control the heat input such that the surface temperature of the product does not exceed a pre-determined value beyond which thermal damage of the material may occur. This process results in reduction in the use of thermal energy as well as the mass of air used in convective drying. Thus, the thermal efficiency of such a process is higher. The quality of the product, as such color and ascorbic acid content, is also typically superior to that obtained with a continuous supply of heat. However, in some cases, there will be a nominal increase in drying time. In the case of microwave-assisted and heat pump drying, for example, the capital cost of the drying system can also be reduced by drying in the intermittent mode.

This paper provides an overview of the basic process, selected results from experiments and mathematical models for a variety of biomaterials dried in a wide assortment of dryers. It begins with a classification of intermittent drying processes that may be applied e.g. time-varying temperature, air flow rate, operating pressure as well as heat input by different modes and in different temporal variations. The beneficial effects of improving the quality of dried bioproducts by different intermittent processes are also included and discussed.  相似文献   


12.
A series of experiments were carried out to study the effects of different drying regimes on the survival of newly-germinated (radicle emerged 0·5-1·5 mm through the seed coat) cabbage seeds and to establish a treatment for reducing the moisture content of these germinated seeds. A preliminary surface-drying step proved necessary to avoid seed agglutination during the main drying stage. Of the drying regimes compared both viability and vigour were most effectively maintained in air, conditioned to between 20 and 30°C and with 80% r.h., flowing through the seeds at 0·25 m s-1. Under these conditions, the viability and vigour of newly-germinated seed was maintained during drying to an equilibrium moisture content of c. 14%. At this moisture content further radicle growth was prevented and seeds remained free-flowing and separate for sowing or for further treatment.  相似文献   

13.
The preservation of lactic acid starter cultures by drying are of increased interest. A further improvement of cell viability is, however, still needed, and the insight into inactivation mechanisms of the cells is a prerequisite. In this present work, we review the inactivation mechanisms of lactic acid starter cultures during drying which are not yet completely understood. Inactivation is not only induced by dehydration inactivation but also by thermal- and cryo-injuries depending on the drying processes employed. The cell membrane has been reported as a major site of damage during drying or rehydration where transitions of membrane phases occur. Some drying processes, such as freeze drying or spray drying, involve subzero or very high temperatures. These physical conditions pose additional stresses to cells during the drying processes. Injuries of cells subjected to freezing temperatures may be due to the high electrolyte concentration (solution effect) or intracellular ice formation, depending on the cooling rate. High temperatures affect most essential cellular components. It is difficult to identify a critical component, although ribosomal functionality is speculated as the primary reason. The activation during storage is mainly due to membrane lipid oxidation, while the storage conditions such as temperature moisture content of the dried starter cultures are important factors.  相似文献   

14.
Wheat seedlings obtained after 2 or 3 days of seed germination in darkness at 20°C (i.e. with a 0.5–0.7 cm long coleoptile) were still viable after drying in darkness in ambient conditions which reduced the shoot moisture content to about 0.30 g H2O g?1 dry mass (DM). Coleoptile and primary leaf growth resumed upon rehydration, but primary roots died and new roots regenerated. In the present work we have investigated whether desiccation tolerance of the shoot (coleoptile and primary leaf combined) was related to some reversible cellular or metabolic changes induced by dehydration. Non‐dehydrated shoots were high in moisture content (4.0–5.0 g H2O g?1 DM) and exhibited an active metabolism as indicated by a high energy charge (EC = 0.85) and cells with well developed mitochondria, endoplasmic reticulum, polysomes and Golgi bodies. Dehydration induced changes in cell membrane properties since it reduced in vivo capacity of the shoot to convert 1‐aminocyclopropane 1‐carboxylic acid (ACC) to ethylene (i.e. ACC oxidase activity). This effect was already observed at 4–5 h of dehydration, namely when shoot moisture content dropped down below about 3.0 g H2O g?1 DM, and ACC‐dependent ethylene production became almost nil when shoot moisture content reached 1.0 g H2O g?1 DM. Dehydration also resulted in decreases in ATP and non‐adenylic triphosphate nucleotide (NTP) contents down to 1–2% of their initial values, and in EC value to 0.20. Concomitant with water loss, sucrose content of the shoot increased and was maximal (about 330 mg g?1 DM, namely three‐fold that of non‐dehydrated organs) after 2 days of drying. Upon rehydration, shoots regained their original moisture content within 3 days, during which they progressively recovered apparent normal metabolism. Reversal of extensive dehydration‐associated cell wall folding occurred between 2 and 3 days of rehydration, when the ultrastructure of coleoptile and primary leaf cells also provided evidence of intensive autophagic activity, indicative of the removal of damaged cell components. Concomitantly, apparently undamaged organelles and endomembranes persisted in the cytoplasm. Restoration of 60–70% of ACC oxidase activity and 80–90% of EC value occurred within 48 and 18 h, respectively. However, the values of the ATP/ADP and NTP/ATP ratios remained lower than in control non‐dehydrated shoots, indicating that not all metabolic deterioration induced by dehydration was completely repaired. Differences in relationships between shoot moisture content and ACC‐oxidase activity or energy metabolism during dehydration and upon rehydration, and cell ultrastruture analyses suggest that desiccation tolerance of wheat seedling shoot is related to mechanisms involved in the maintenance of cell structure during water loss and the cell capacity to repair the dehydration damage.  相似文献   

15.
In order to investigate the persistence of membrane and matrix functions following desiccation, enzymic activities were studied in Vicia faba L. seed mitochondrial subfractions subjected to drying and rehydration in vitro. Mitochondria were prepared after 0, 12 and 24 h of seed imbibition. These were fractionated into inner membranes ("submitochondrial particles"), outer membranes (12 and 24 h only) and the soluble matrix. Enzyme activities associated with the inner membrane and matrix were found to increase several-fold during the first 12 h of imbibition. The two matrix enzymes examined, malate dehydrogenase and glutamate dehydrogenase, were insensitive to in vitro drying at all stages of imbibition. The membrane-bound activities from 12 h and 24 h imbibed material, antimycin A-sensitive NADH: cytochrome c oxidoreductase and (Fo-F1)-ATPase of the inner membrane and antimycin A-insensitive NADH: cytochrome c oxidoreductase of the outer membrane, were moderately sensitive to dehydration. The F1-ATPase solubilized from the inner membrane (Fo-F1) complex was much less sensitive to drying, provided this was done at room temperature.
Mitochondria posessing their outer membranes could not be prepared from dry seed. The antimycin A-sensitive NADH: cytochrome c oxidoreductase from inner mitochondrial membranes of unimbibed seed was extremely sensitive to desiccation in vitro, about 75 to 80% of the activity being lost. This loss could be somewhat reduced by addition of glycerol or sucrose before drying.
It is concluded that uncontrolled desiccation results in major damage to some of the membrane-bound enzymic systems in mitochondria, whereas activities in the soluble fraction are remarkably tolerant of desiccation.  相似文献   

16.
为探究不同干燥方式、不同存储温度和存储时间对羊栖菜中岩藻黄素稳定性的影响,本研究考察了三种不同干燥方式,包括自然阴干、低温烘干和冷冻干燥,对羊栖菜中岩藻黄素稳定性的影响。结果表明采用冷冻干燥所得羊栖菜,含水量低,岩藻黄素含量高,达到699.2μg/g,岩藻黄素保留率为94.7%,远高于自然阴干及低温烘干。因此,冷冻干燥是最佳干燥方法。考察了四个不同温度(-20、4、25、30℃)存储对冻干羊栖菜中岩藻黄素稳定性的影响,结果表明随着存储温度的升高,岩藻黄素的降解率明显增高,因此,-20℃为最佳储存温度。  相似文献   

17.
An analytical expression for the drying time of thin lumber is derived, based on a method presented in this study. The laws of moisture content change in wood as function of mass transfer are used for the theoretical approach. The diffusion equation for moisture content is set up for a three-dimensional block of lumber based on the assumption of uniform initial distribution of moisture throughout the specimen. The boundary condition stipulates that the moisture gradient at the boundary is proportional to the deviation of the moisture content of the slab from the equilibrium value at that temperature. These conditions are used to derive an analytical expression for the time required to get from an initial moisture distribution to a desired final moisture content of thin lumber. For a sample calculation, the result of drying time agrees within 10% with the prediction of previously published analytical formulas for the drying curve.  相似文献   

18.
Effect of mild drying on the mineralization of soil nitrogen   总被引:6,自引:0,他引:6  
Summary Drying soil to –100 kPa increased the subsequent mineralization of nitrogen under optimal moisture conditions. The effect was greater when the soils were dried to –1500 Pa. Mineralization was greater after four cycles of wetting and drying than after one. Depending on the drying conditions, the amount of nitrogen mineralized after drying to –1500 Pa was between 6.8 and 18.2% of that mineralized after chloroform fumigation. After drying the soils the average ratio of CO2-C respired to min N was 21.1–22.3 depending on the drying conditions, whereas after chloroform treatment and autoclaving the ratio was 6.0 and 9.9 respectively. The effect of drying on nitrogen mineralization is attributed to two causes: the death and subsequent lysis of a small proportion of the soil organisms, and to the desorption of organic substances with a wide C/N ratio.Because of the stimulation of even mild drying conditions, marked differences in mineralization rates of soil nitrogen between cropping seasons must be expected.  相似文献   

19.
AIMS: To assess four carbohydrates for the protective effect against Lactobacillus helveticus cells inactivation during vacuum drying, and to study the effect of selected carbohydrate on changes of inactivation kinetics. METHODS AND RESULTS: Early stationary phase L. helveticus cells grown in MRS media were recovered from fermentation broth, washed with PBS buffer (pH 7.0), and then mixed with different concentrations of four carbohydrates, namely lactose, sorbitol, inulin, and xanthan gum. Cells were dried in a vacuum drier at 100 mbar, 43 degrees C for 12 h. Only cells with 1% sorbitol addition showed higher survival (18%) over cells without added carbohydrate (8%). Using in situ microbalance technique whereby cell weight during vacuum drying was continuously monitored via precision balances integrated into the vacuum chamber, drying and inactivation kinetics of cells and cells mixed with sorbitol were established. CONCLUSION: Survival of L. helveticus during the vacuum drying could be improved by the addition of optimal concentration of 1% sorbitol. Addition of sorbitol did not cause drastic changes in drying rate, water content and water activity of samples. The protection mechanisms of sorbitol seemed not to be due to a direct physical effect, which could be related to drying rate. SIGNIFICANCE AND IMPACT OF THE STUDY: The increase in survival of cells after vacuum drying by the addition of a protective carbohydrate may provide an alternative mean to preserve starter cultures at a higher level of activity.  相似文献   

20.
本文通过确定大蒜片微波真空干燥的临界水分含量,修正Cu i等提出的胡萝卜片微波真空干燥动力学模型,使其适用于大蒜片,并对大蒜片与胡萝卜片微波真空干燥的临界水分含量不同的机理进行了探讨。采用质构仪和扫描电子显微镜分别对新鲜大蒜片、新鲜胡萝卜片以及干燥至边界条件下的大蒜片、胡萝卜片的质构和超微结构进行了测定。确定了大蒜片微波真空干燥的临界水分含量为Xw=1,在干燥后期对此模型进行了修正,修正系数为k=10.924e-3.2394Xw(0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号