首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method using the principle of affinity elution chromatography is described for the assay of adenylate cyclase in intact human platelets. By incubating platelet-rich plasma in the presence of radioactively labelled adenine, the ATP pool of the cells was prelabelled. Formation of labelled cyclic AMP from ATP was determined by extracting the platelets with HC1O4. After removal of the latter as KC1O4, the extract containing cyclic AMP and other adenine nucleotides was adsorbed in a NN-diethyl-N-2-hydroxypropylamino (QAE)-cellulose column. The column was washed, and subsequently cyclic AMP was specifically eluted with a cyclic AMP-dependent protein kinase and the radioactivity of the eluate was determined.  相似文献   

2.
A sensitive, reproducible assay for adenylate cyclase is described which separates labeled cyclic AMP from ATP and other nucleotides by high-performance liquid chromatography (HPLC) on reverse-phase columns. The technique utilizes [3H]ATP as substrate, and the principal compound contaminating the [3H]cyclic AMP peak, adenosine, is removed by incubation of assay tubes with small amounts of adenosine deaminase. The HPLC elution utilizes high resolution (3 m) short (10 cm) C-18 columns for increased resolution and decreased flow rates. Since cyclic AMP elutes at 4 min following injection, this procedure can easily process large numbers of samples per day when combined with automated techniques of sample injection and collection.  相似文献   

3.
A highly sensitive adenylate cyclase assay   总被引:282,自引:0,他引:282  
A highly sensitive adenylate cyclase assay method has been developed which employs sequential chromatography on columns of Dowex cation exchange resin and aluminum oxide. With the use of [α-32P]ATP as substrate, this method permits the nearly complete separation of cyclic [32P]AMP formed from the substrate and other 32P-containing compounds, i.e., 32P in the assay blanks was barely detectable. In comparative studies, this method was found to be considerably more sensitive than previously reported methods. The high sensitivity of this method permits detection of the small amounts of cyclic AMP formed at low enzyme concentrations or at early time points in kinetic studies.  相似文献   

4.
A method for the separation of cyclic AMP from adenosine and polyvalent adenine nucleotides is described. The method consists of the sequential elution of adenosine and cyclic AMP from a single column of acidic aluminum oxide (alumina) with dilute hydrochloric acid and ammonium acetate. Adenosine, adenine, xanthine, and hypoxanthine are rapidly eluted with the application of 0.005 N hydrochloric acid while cyclic AMP remains adsorbed to the alumina. A subsequent application of 0.1 M ammonium acetate elutes more than 90% of the cyclic AMP. Under these conditions, polyvalent nucleotides (AMP, ADP, and ATP) remain adsorbed to the alumina. The method permits the measurement of adenylylcyclase activity using [3H]ATP as the labeled substrate. The same technique can be used to measure the accumulation of cyclic AMP in intact cells after labeling the ATP pool with [3H]adenine. With slight modification, the technique can be used to measure the activity of cyclic-AMP phosphodiesterase using [3H]cyclic AMP as the substrate. The proposed technique provides rapid, highly reproducible assays using inexpensive, disposable columns.  相似文献   

5.
The 105 000 X g gupernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and cyclic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

6.
Simple one step assay methods for adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) and cyclic nucleotide phosphodiesterases (3',5'-cyclic nucleotide 5'-nucleotidohydrolase EC 3.1.4.17) have been developed. [alpha-32-P] ATP is used as the substrate for adenylate cyclase. Acid-heat destruction of [32-P] ATP remaining after the cyclase reaction followed by Zn-Ba treatment quantitatively leaves cyclic [32-P] AMP in the supernatant essentially free from other 32-P-containing compounds. This assay method requires no corrections for recovery and routinely yields blank values less than 0.03 per cent. If higher sensitivity is desired, a simple 5 min alumina column step can be introduced into the procedure which quantitatively elutes cyclic [32-P] AMP directly into a liquid scintillation vial and lowers the blank values to less than 0.002 per cent. This method is rapid and easily performed, without sacrificing high reliability, specificity, or sensitivity. One step phosphodiesterase assays are easily accomplished using 32-P-labeled cyclic nucleotides as substrates. Descending paper chromatography of the reaction mixture on individual 2 cm wide paper strips gives a complete and quantitative separation of all possible products including [5'-32-P] AMP and [5'-32-P] GMP from their respective 32-P-labeled 3',5'-cyclic nucleotides in 1-2 h. The paper strips are cut, inserted in scintillation vials without scintillant and the 32-P-products determined by Cerenkov counting. Low blank values of less than 0.5 per cent and the use of high specific activity 32-P-labeled cyclic nucleotide substrates make this method the most reliable and most sensitive phosphodiesterase assay described to date. Because of the simplicity, specificity, and high sensitivity obtainable with these assay methods using 32-P-labeled substrates, we have also devised simple conditions for the preparation and purification of [alpha-32-P] ATP, cyclic [32-P] AMP and cyclic [32-P] GMP with specific activities in excess of 100 Ci/mmol. These high specific activity 32-Plabeled cyclic nucleotides are important for these new assay methods and are also useful to follow purification recovery of endogenous cyclic AMP and cyclic GMP from biological materials before protein binding or radioimmunological isotope displacement assays when performed in the femtomole range.  相似文献   

7.
The 105 000 × g supernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N′-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and clycic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

8.
In the assay of adenylate cyclase using [α-32P]ATP as the substrate and alumina chromatography as the separating procedure for labeled nucleotides, blank levels are dependent on the quality of the labeled ATP and also on that of the alumina. In order to lower the blanks by eliminating the radioactive material contaminating the commercial [α-32P]ATP preparations, the following treatment is proposed: The reaction mixture resulting from the incubation is heated for 4 min at 95°C in 0.165 n HCl, then it is chromatographed on a selected alumina (Woelm) column. In the conditions used, cyclic AMP was unaffected, while blank values were low. The detection limit of [32P]cyclic AMP was thus higher and the precision of enzyme activity determination was improved, while the advantages of one-step chromatography were retained.  相似文献   

9.
Adenosine, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phosphodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell surface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides had no effect on the accumulation of cyclic AMP. Among other adenine nucleotides we tested, adenosine 5'-monophosphoramidate, but not adenosine 5'-monosulfate significantly increased cyclic AMP especially with the addition of papaverine. Neither 2'- nor 3'-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

10.
"Spare" beta-adrenergic receptors of rat white adipocyte membranes   总被引:1,自引:0,他引:1  
The apparent equilibrium dissociation constants for the interaction of isoproterenol with beta-receptors and adenylate cyclase were determined under the same conditions in rat adipocyte membranes and were compared with the apparent dissociation constant for the interaction of isoproterenol with cyclic AMP accumulation in the adipocyte. From these determinations, it was calculated that the occupancy of less than 4% of the receptor population is required for half-maximal stimulation of adenylate cyclase in membranes and cyclic AMP accumulation in intact cells, provided that receptor-binding and adenylate cyclase assays are performed in the presence of guanine nucleotides. Since guanine nucleotides are also required for adenylate cyclase activation in intact cells, it is concluded that the beta-receptors of rat adipocytes are "spare" receptors.  相似文献   

11.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

12.
The effects of glucose, a series of glucose metabolites, nicotinamide nucleotides, Ca2+ and p-chloromercuribenzenesulphonate on adenylate cyclase activity in homogenates of mouse pancreatic islets were studied. The basal activity of the adenylate cyclase was approx. 6 pmol of cyclic AMP formed/30 min per microng of DNA at 30 degrees C. The enzyme activity was stimulated by some 150% by fluoride. Starvation of the animals for 48h had no effect on either the basal or the fluoride-stimulated activity. The adenylate cyclase activity was increased by 40-50% when 17 mM-glucose, 10 micronM-phosphoenolpyruvate or 10 micronM-pyruvate was added to the assay medium. The effect of glucose was unchanged in the presence of 17 mM-mannoheptulose, and mannoheptulose alone had no effect. The other glycolytic intermediates, and the coenzymes NAD+, NADH and NADPH, at concentrations up to 1 mM were without any detectable effect on the rate of formation of cyclic AMP. The insulin secretagogue p-chloromercuribenzenesulphonate inhibited the adenylate cyclase markedly even at a concentration of 10 micronM. Calculated concentrations of free Ca2+ of 10 micronM and 0.1 mM inhibited adenylate cyclase by 29 and 71% respectively. It is concluded that both glucose itself and phosphoenolpyruvate and/or pyruvate are true activating ligands for islet and adenylate cyclase and that inhibition of the cyclase by Ca2+ may be of physiological significance.  相似文献   

13.
Low, micromolar concentrations of aluminum (in the presence of NaF) were shown to strongly activate human platelet adenylate cyclase and provided a useful probe for evaluating cyclic AMP second messenger function distal to the receptor: The effect of normal aging and disease state on second messenger activity in man was studied by measurements of the aluminum-activated enzyme. A significant decline in aluminum-stimulated platelet adenylate cyclase activity in older, healthy subjects was observed. An age-associated decline in NaF-stimulated cyclic AMP synthesis was also demonstrated for normal, non-demented subjects. These findings suggest an age-associated lesion at the level of the guanine nucleotide regulatory protein/catalytic subunit of the adenylate cyclase complex. However, for patients with Alzheimer's disease no such decline in platelet adenylate cyclase activity was detected, and increased sensitivity to both aluminum and NaF was demonstrated.  相似文献   

14.
This paper deals with a rapid assay of adenylate cyclase activity and 3′,5′ cyclic AMP phosphodiesterase activity which permits simultaneous measurements of other pathways of ATP catabolism. The separation of all the adenylic nucleotides was obtained by an electrophoresis on cellulose acetate 15 min at 50 V/cm with a fluorescent buffer pH 8.6. Before electrophoresis, the incubation sample was added with a carrier solution of nucleotides to allow their localization under uv light, by fluorescence inhibition. Each fraction was cut and dissolved in Bray's liquid for scintillation counting. This assay method is rapid, reliable, and sensitive, it is suitable either for research or for routine and clinical purposes.  相似文献   

15.
Cyclic AMP in Strongylocentrotus purpuratus sperm was elevated approximately 2-fold by theophylline or 1-methyl-3-isobutylxanthine. Factors released from sea urchin eggs (FRE) elevated sperm cyclic AMP by about 7-fold within 1 min, and the combination of FRE with theophylline increased sperm cyclic AMP up to 100-fold within 1 min. Cyclic GMP in sea urchin sperm was slightly elevated by theophylline, but was lowered by FRE. Cyclic GMP in sperm treated with FRE plus theophylline was not higher than in sperm treated with theophylline alone. The ability of FRE-containing sea water to increase sperm cyclic AMP in the presence of theophylline was altered only slightly if at all by boiling, but it was decreased by about 50% by dialysis and destroyed by ashing. Filtration of FRE on Sephadex G-50 columns yielded two peaks of cyclic AMP-elevating activity. One peak (peak I) was eluted at the column void volume, and the other (peak II) was retained by the column. The cyclic GMP-lowering activity was located in fractions approximately corresponding to peak I of cyclic AMP-elevating activity. Dialysis of FRE-containing sea water before its application to the G-50 column virtually eliminated peak II of the cyclic AMP-elevating activity. When the cyclic AMP-elevating activity in peak I was filtered on Bio Gel A-5m columns, it also migrated at or near the column void volume. Fractions corresponding to peak I contained material that inhibited both guanylate and adenylate cyclase activities in broken cell preparations of sperm and guanylate cyclase from rat lung. The inhibitory material was stable to boiling, non-dialyzable, and destroyed by ashing. Under a variety of conditions, FRE-containing sea water or cyclic AMP-elevating peaks I or II did not stimulate sperm adenylate cyclase activity in broken cell preparations.  相似文献   

16.
An automated high-performance liquid chromatographic method for the assay of 3',5'-cyclic AMP was developed using octylsilica. Total analysis time was 10.1 min, with cAMP eluting at 3 min. As little as 10 pmol of cyclic AMP could be detected by absorption at 260 nm. Peak height and area were linearly related to cyclic AMP concentration over at least two orders of magnitude. The analytical procedure gave good results in the assay of crude microsomal preparations of adenylate cyclase from both bovine brain and sea urchin eggs. The method was used to demonstrate that sea urchin adenylate cyclase is a Ca2+-activated enzyme.  相似文献   

17.
The validity of using the binding-protein method for determining cyclic AMP in purified and partially purified extracts of Phaseolus tissues has been examined and confirmed. Measurement of cyclic AMP concentration by binding-protein gave similar results to those obtained by direct spectrophotometry of purified extracts. A cyclic AMP binding-protein and adenylate cyclase were demonstrated in Phaseolus extracts. Isolated intact chloroplasts were shown to possess adenylate cyclase activity but persistent cyclic AMP phosphodiesterase activity obviated quantitative assessment.  相似文献   

18.
The adenylate cyclase system of the yeast Saccharomyces cerevisiae contains many proteins, including the CYR1 polypeptide, which is responsible for catalyzing the formation of cyclic AMP from ATP, RAS1 and RAS2 polypeptides, which mediate stimulation of cyclic AMP synthesis by guanine nucleotides, and the yeast GTPase-activating protein analog IRA1. We have previously reported that adenylate cyclase is only peripherally bound to the yeast membrane. We have concluded that IRA1 is a strong candidate for a protein involved in anchoring adenylate cyclase to the membrane. We base this conclusion on the following criteria: (i) a disruption of the IRA1 gene produced a mutant with very low membrane-associated levels of adenylate cyclase activity, (ii) membranes made from these mutants were incapable of binding adenylate cyclase in vitro, (iii) IRA1 antibodies inhibit binding of adenylate cyclase to the membrane, and (iv) IRA1 and adenylate cyclase comigrate on Sepharose 4B.  相似文献   

19.
—The accumulation of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) was studied in cell-free homogenates of guinea pig brain. Homogenates, prepared in Krebs-Ringer buffer, responded markedly to the addition of neurohormones with an increased rate of cyclic AMP synthesis; preparations from cerebellum, cerebral cortex, and hippocampus responded to a degree approximating that achieved with slices of these areas of guinea pig brain. Adenylatc cyclase activity was seen only when cyclic AMP was measured by a [3H]adenine prelabelling technique or when total cyclic AMP was measured by radioimmunoassay; [32P]ATP did not serve as a substrate for this preparation of the enzyme. The adenylate cyclase was paniculate and required a Krebs Ringer buffer; use of tris, or tris with Mg2+ and Ca2+, resulted in a preparation totally devoid of hormonal stimulation. Digestion by purified beef heart cyclic nucleotide phosphodiesterase, Dowex chromatography, solubility in Ba(OH)2-ZnSO4 mixtures, and two thin layer chromatographic systems demonstrated that the product of the hormonally stimulated adenylate cyclase preparation was cyclic AMP. The selectivity of hormonal stimulation and the adrenergic character of the hormonal receptors from different brain areas were maintained in the cell-free preparation. However, simultaneous stimulation with two different neurohormones resulted in additive responses, rather than in the potentiation observed in preparations of slices of brain.  相似文献   

20.
Liver plasma membranes of hypophysectomized rats were purified, treated with 0.1 m Lubrol-PX and centrifuged at 165,000g for 1 h. The detergent solubilized 50% of the membrane protein; adenylate cyclase activity was present in the supernatant fraction. Optimal substrate concentration of the soluble enzyme was 0.32 mm ATP. Basal activity of 25 preparations of the solubilized enzyme ranged from 124 to 39 pmol cyclic AMP/mg protein/10 min. The solubilized enzyme retained the same sensitivity to activation by guanyl nucleotides as was present in the membrane preparation from which it was derived. Relative sensitivity of the solubilized enzyme with 0.1 mm nucleotides or -side was GDP > GTP > GMP > guanosine; GMP-PNP = GMP-PCP > ITP > GTP. GTP, GMP-PCP, GMP-PNP and other nucleotides were hydrolyzed by phosphohydrolases present in liver membranes that were solubilized with Lubrol-PX along with adenylate cyclase. The presence of the ATP regenerating system in the adenylate cyclase assay also aided in maintaining guanyl nucleotide concentrations. The degree of adenylate cyclase activation by guanyl nucleotides was not related to the sparing effects of nucleotides on substrate ATP hydrolysis. These findings demonstrate that activation of adenylate cyclase by nucleotides is a consequence of a nucleotide-enzyme interaction that is independent of membrane integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号