首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP and cyclic GMP can be separated from thymidine and its possible metabolites, electrolytes, and polyvalent nucleotides using columns of acidic alumina. Electrolytes and thymidine are not adsorbed on acidic alumina at pH 4.4 while cyclic nucleotides and polyvalent nucleotides are adsorbed at this pH. Cyclic AMP and cyclic GMP are eluted together from acidic alumina with 0.2 M ammonium formate (pH 6.0) and the polyvalent nucleotides remain adsorbed. The cyclic nucleotides are separated by chromatography on Dowex AG 1 X 8 resin. Recovery is 60–64% for cyclic AMP and cyclic GMP isolated from renal tissue samples. This methodology permits the separation of tritiated thymidine from cyclic nucleotides which are present in tissue preparations used in studies on the role of cyclic nucleotides in cellular growth.  相似文献   

2.
Cyclic AMP and cyclic GMP can be separated from thymidine and its possible metabolites, electrolytes, and polyvalent nucleotides using columns of acidic alumina. Electrolytes and thymidine are not adsorbed on acidic alumina at pH 4.4 while cyclic nucleotides and polyvalent nucleotides are adsorbed at this pH. Cyclic AMP and cyclic GMP are eluted together from acidic alumina with 0.2 M ammonium formate (pH 6.0) and the polyvalent nucleotides remain adsorbed. The cyclic nucleotides are separated by chromatography on Dowex AG 1 X 8 resin. Recovery is 60--64% for cyclic AMP and cyclic GMP isolated from renal tissue samples. This methodology permits the separation of tritiated thymidine from cyclic nucleotides which are present in tissue preparations used in studies on the role of cyclic nucleotides in cellular growth.  相似文献   

3.
A variety of radioactive analogs of adenine and adenosine were incubated with guinea pig cerebral cortical slices. Neither 1,N6-etheno[14C] adenosine nor 1,N6-etheno[14C] adenine were significantly incorporated into intracellular nucleotides. 2-chloro[8-3H] adenine was incorporated, but at a very low rate and conclusive evidence for the formation of intracellular radioactive 2-chloro-cyclic AMP was not obtained. N6-Benzyl[14C] adenosine was converted only to intracellular monophosphates and significant formation of radioactive N6-benzylcyclic AMP was not detected during a subsequent incubation. 2'-Deoxy-[8-14C] adenosine was converted to both intracellular radioactive 2'-deoxy-adenine nucleotides and radioactive adenine nucleotides. Stimulation of these labeled slices with a variety of agents resulted in formation of both radioactive 2'-deoxycyclic AMP and cyclic AMP. Investigation of the effect of various other compounds on uptake of adenine or adenosine suggested that certain other adenosine analogs might serve as precursors of abnormal cyclic nucleotides in intact cells.  相似文献   

4.
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.  相似文献   

5.
Cell surface ecto-nucleotidases are considered the major effector system for inactivation of extracellular adenine nucleotides, whereas the alternative possibility of ATP synthesis has received little attention. Using a TLC assay, we investigated the main exchange activities of 3H-labeled adenine nucleotides on the cultured human umbilical vein endothelial cells. Stepwise nucleotide degradation to adenosine occurred when a particular nucleotide was present alone, whereas combined cell treatment with ATP and either [3H]AMP or [3H]ADP caused unexpected phosphorylation of 3H-nucleotides via the backward reactions AMP --> ADP --> ATP. The following two groups of nucleotide-converting ecto-enzymes were identified based on inhibition and substrate specificity studies: 1) ecto-nucleotidases, ATP-diphosphohydrolase, and 5'-nucleotidase; 2) ecto-nucleotide kinases, adenylate kinase, and nucleoside diphosphate kinase. Ecto-nucleoside diphosphate kinase possessed the highest activity, as revealed by comparative kinetic analysis, and was capable of using both adenine and nonadenine nucleotides as phosphate donors and acceptors. The transphosphorylation mechanism was confirmed by direct transfer of the gamma-phosphate from [gamma-32P]ATP to AMP or nucleoside diphosphates and by measurement of extracellular ATP synthesis using luciferin-luciferase luminometry. The data demonstrate the coexistence of opposite, ATP-consuming and ATP-generating, pathways on the cell surface and provide a novel mechanism for regulating the duration and magnitude of purinergic signaling in the vasculature.  相似文献   

6.
A method using the principle of charge-transfer chromatography has been developed for the determination of cyclic AMP levels in intact prelabeled cells. The ATP pool was prelabeled by incubating the cells in the presence of radioactive adenine. The cyclic AMP formed from ATP was extracted with HC10(4) and separated from adenine and other adenosine-related nucleotides by chromatography on acriflavin-Sephadex G-25. This method provides a rapid and sensitive isolation of cyclic AMP with high recovery (95-100%) and low blnks. Further, no contamination of the cyclic AMP fractions was found by either adenine or adenosine nucleotides such as ATP, ADP or AMP. This procedure is applicable to a variety of cell or tissue systems.  相似文献   

7.
A variety of radioactive analogs of adenine and adenosine were incubated with guinea pig cerebral cortical slices. Neither 1,N6-ethano[14C]adenosine nor 1,N6-ethanol[14C]adenine were significantly incorporated into intracellular nucleotides. 2-chloro[8-3H]adenine was incorporated, but at a very low rate and conclusive evidence for the formation of intracellular radioactive 2-chlorocyclic AMP was not obtained. N6-Benzyl[14C]adenosine was converted only to intracellular monophosphates and significant formation of radioactive N6-benzylcyclic AMP was not detected during a subsequent incubation. 2′-Deoxy-[8-14C] adenosine was converted to both intracellular radioactive 2′-deoxyadenine nucleotides and radioactive adenine nucleotides. Stimulation of these labeled slices with a variety of agents resulted in formation of both radioactive 2′-deoxycyclic AMP and cyclic AMP. Investigation of the effect of various other compounds on uptake of adenine or adenosine suggested that certain other adenosine analogs might serve as precursors of abnormal cyclic nucleotides in intact cells.  相似文献   

8.
A sensitive, reproducible assay for adenylate cyclase is described which separates labeled cyclic AMP from ATP and other nucleotides by high-performance liquid chromatography (HPLC) on reverse-phase columns. The technique utilizes [3H]ATP as substrate, and the principal compound contaminating the [3H]cyclic AMP peak, adenosine, is removed by incubation of assay tubes with small amounts of adenosine deaminase. The HPLC elution utilizes high resolution (3 m) short (10 cm) C-18 columns for increased resolution and decreased flow rates. Since cyclic AMP elutes at 4 min following injection, this procedure can easily process large numbers of samples per day when combined with automated techniques of sample injection and collection.  相似文献   

9.
Adenosine, adenine, cyclic adenosine monophosphate (AMP), AMP, nicotinamide adenine dinucleotide, adenosine diphosphate, and adenosine triphosphate (ATP) were recovered quantitatively from aqueous portions of lipid extracts of microfouling, detrital, and sedimentary microbial communities. These could be detected quantitatively in the picomolar range by forming their 1-N6-etheno derivatives and analyzing by high-pressure liquid chromatography with fluorescence detection. Lipid extraction and subsequent analysis allowed the simultaneous measurement of the microbial community structure, total microbial biomass with the quantitative recovery of the adenine-containing cellular components, which were protected from enzymatic destruction. This extraction and fluorescent derivatization method showed equivalency with the luciferin-luciferase method for bacterial ATP measurements. Quick-freezing samples in the field with dry ice-acetone preserved the ATP and energy charge (a ratio of adenosine nucleotides) for analysis at remote laboratories. The metabolic lability of ATP in estuarine detrital and microfouling communities, as well as bacterial monocultures of constant biomass, showed ATP to be a precarious measure of biomass under some conditions. Combinations of adenosine and adenine nucleotides gave better correlations with microbial biomass measured as extractable lipid phosphate in the detrital and microfouling microbial communities than did ATP alone. Stresses such as anoxia or filtration are reflected in the rapid accumulation of intracellular adenosine and the excretion of adenosine and AMP into the surrounding milieu. Increases in AMP and adenosine may prove to be more sensitive indicators of metabolic status than the energy charge.  相似文献   

10.
Cyclic AMP accumulates in cerebral cortical slices from the C57B1/6J mouse incubated with the following stimulatory agents: norepinephrine, adenosine, veratridine and adenosine-biogenic amine combinations. The results with slices labelled with radioactive adenine or adenosine provide evidence for the existence of distinct functional compartments of adenine nuclcotides which serve as precursors of cyclic AMP on stimulation with specific agents. Thus, in slices labelled with [14C]adenine or [3H]adenosine the ratio of [14C] to [3H]cyclic AMP was dependent on the stimulatory agent; with veratridinc the ratio was 1.4 while with adenosine the ratio was 3.0. In addition, a greater than 2-fold difference in the ratio of endogenous/radioactive cyclic AMP was observed in adenine or adenosine-labelled slices after incubation with veratridine, norepinephrine, adenosine or adenosine-amine combinations; the lowest ratios after stimulation with veratridine and the highest after adenosine or adenosine-amine combinations. The high ratio observed with adenosine was in part due to a quite marked incorporation of the stimulant, adenosine, into the accumulating cyclic AMP. Such distinct functional compartments of cyclic AMP precursors may represent different cell types and/or morphological entities within one cell type.  相似文献   

11.
ATP, ADP and AMP but not adenosine increased cyclic AMP in dispersed enterocytes prepared from guinea pig small intestine. This action of ATP was augmented by IBMX and was reproduced by App(NH)p or App(CH2)p. ATP also increased the formation of cyclic [14C]AMP in enterocytes that had been preincubated with [14C]adenine. Gpp(NH)p and NaF each caused persistent activation of adenylate cyclase in plasma membranes from enterocytes and ATP caused significant augmentation of this persistent activation. In addition to increasing cellular cyclic AMP and augmenting Gpp(NH)p and NaF-stimulated persistent activation of adenylate cyclase, ATP increased the Isc across mounted strips of small intestine and inhibited net absorption of fluid and electrolytes in segments of everted small intestine. These results indicate that intestinal epithelial cells possess a receptor that interacts with ATP and other adenine nucleotides and that receptor occupation by ATP causes activation of adenylate cyclase, increased cyclic AMP and changes in active ion transport across intestinal mucosa.  相似文献   

12.
Specific binding of [3H]AMP to rat hepatocytes and their plasma membranes was studied. It was shown that the time course of this binding reached a maximum within the first 15 seconds. An equilibrium binding study revealed the presence of a single class of binding sites with Kd of 20 microM both in hepatocytes and in plasma membranes. The [3H]AMP binding sites were inactivated by treatment with trypsin as well as by heating. 5'-Phosphorylated derivatives of adenosine (ATP, ADP) effectively competed with [3H]AMP for the binding sites, while adenosine, beta-glycerophosphate and 3'-AMP were inactive. The binding of [3H]AMP increased by 400% in the presence of concanavalin A, a specific inhibitor of plasma membrane 5'-nucleotidase. It was concluded that the catalytic center of 5'-nucleotidase is a receptor for adenine nucleotides.  相似文献   

13.
Adenosine, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phosphodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell surface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides had no effect on the accumulation of cyclic AMP. Among other adenine nucleotides we tested, adenosine 5'-monophosphoramidate, but not adenosine 5'-monosulfate significantly increased cyclic AMP especially with the addition of papaverine. Neither 2'- nor 3'-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

14.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

15.
Intact hepatopancreocytes were obtained from hibernating or active purinotelic snails, H. pomatia (Gastropoda). When incubated with [14C]glycine or [14C]formate, they synthesized de novo purine compounds, including also adenylates, adenosine and adenine. Hepatopancreocytes resynthesized also adenylates and other purine compounds from [3H]adenine or from [3H]adenosine split by the H. pomatia cell enzyme to adenine; the resynthesis of ADP+ATP was proportional to adenine concentration. Thus all reactions of the postulated adenine cycle: AMP leads to adenosine leads to adenine leads to AMP occur in the intact hepatopancreocytes; this cycle could probably be responsible for maintenance of the high level of adenylates during winter sleep.  相似文献   

16.
Metabolism of [14C]adenosine in a dose of 100 mg per 1 kg of mass and [14C]ATP in the equimolar quantity was studied in rats after intraperitoneal administration. Adenosine is shown to enter tissues of the liver, spleen, thymus, heart and erythrocytes where it phosphorylates into adenine nucleotides (mainly ATP) and deaminates into inosine. The content of adenosine increases for a short period in the above tissues, except for erythrocytes and plasma. The latter accumulates a considerable amount of inosine and hypoxanthine, but only traces of uric acid, xanthine and adenine nucleotides. ATP administered to rats catabolizes through the adenosine formation. The exogenic adenosine and ATP replace in tissues and erythrocytes only a slight part (1-12%) of their total adenine nucleotide pool. The content of these metabolites and ADP in the blood plasma does not change essentially under the effect of adenosine, ATP and AMP. It is shown on rats whose adenine nucleotide pool of cells is marked by the previous administration of [14C]adenine that injections of adenosine, ATP and inosine do not accelerate catabolism of adenine nucleotides in tissues and erythrocytes as well as do not increase the level of catabolism products in the blood plasma. Adenosine enhances and ATP lowers the content of cAMP in spleen and myocardium, respectively.  相似文献   

17.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

18.
Infusion of adenine nucleotides and adenosine into perfused rat livers resulted in stimulation of hepatic glycogenolysis, transient increases in the effluent perfusate [3-hydroxybutyrate]/[acetoacetate] ratio, and increased portal vein pressure. In livers perfused with buffer containing 50 microM-Ca2+, transient efflux of Ca2+ was seen on stimulation of the liver with adenine nucleotides or adenosine. ADP was the most potent of the nucleotides, stimulating glucose output at concentrations as low as 0.15 microM, with half-maximal stimulation at approx. 1 microM, and ATP was slightly less potent, half-maximal stimulation requiring 4 microM-ATP. AMP and adenosine were much less effective, doses giving half-maximal stimulation being 40 and 20 microM respectively. Non-hydrolysed ATP analogues were much less effective than ATP in promoting changes in hepatic metabolism. ITP, GTP and GDP caused similar changes in hepatic metabolism to ATP, but were 10-20 times less potent than ATP. In livers perfused at low (7 microM) Ca2+, infusion of phenylephrine before ATP desensitized hepatic responses to ATP. Repeated infusions of ATP in such low-Ca2+-perfused livers caused homologous desensitization of ATP responses, and also desensitized subsequent Ca2+-dependent responses to phenylephrine. A short infusion of Ca2+ (1.25 mM) after phenylephrine infusion restored subsequent responses to ATP, indicating that, during perfusion with buffer containing 7 microM-Ca2+, ATP and phenylephrine deplete the same pool of intracellular Ca2+, which can be rapidly replenished in the presence of extracellular Ca2+. Measurement of cyclic AMP in freeze-clamped liver tissue demonstrated that adenosine (150 microM) significantly increased hepatic cyclic AMP, whereas ATP (15 microM) was without effect. It is concluded that ATP and ADP stimulate hepatic glycogenolysis via P2-purinergic receptors, through a Ca2+-dependent mechanism similar to that in alpha-adrenergic stimulation of hepatic tissue. However, adenosine stimulates glycogenolysis via P1-purinoreceptors and/or uptake into the cell, at least partially through a mechanism involving increase in cyclic AMP. Further, the hepatic response to adenine nucleotides may be significant in regulating hepatic glucose output in physiological and pathophysiological states.  相似文献   

19.
Isolated rat kidneys were perfused with a recirculating medium containing exogenous adenosine 3':5'-monophosphate (cyclic AMP) or guanosine 3':5'-monophosphate (cyclic GMP) at an initial concentration of 0.1 mM. Both cyclic nucleotides were rapidly removed from the perfusate. Urinary excretion accounted for about 20% and 40% of the respective cyclic AMP and cyclic GMP lost from the perfusate. The metabolism of the cyclic nucleotides was studied by 14C-labeled cyclic nucleotides in the perfusate. During 60 min, 30% of added cyclic [14C]AMP was metabolized to renal [14C]adenine nucleotides (ATP, ADP, and AMP) and 30% to perfusate [14C]uric acid. Similarly, 20% of cyclic[14C]GMP was metabolized to renal [14C]guanine nucleotides (GTP, GDP, and GMP) and 30% to perfusate [14C]uric acid. Urine contained principally unchanged 14C-labeled cyclic nucleotide. Addition of 0.1 mM cyclic AMP to the perfusate elevated the renal ATP and ADP contents 2-fold. Addition of 0.1 mM of either cyclic AMP or cyclic GMP to the perfusate also elevated the renal production of uric acid 2- to 3-fold. The production and distribution of metabolites of exogenous cyclic nucleotides were also studied in the intact rat. Within 60 min after injection, 3.3 mumol of either 14C-labeled cyclic AMP or cyclic GMP was cleared from the plasma. Kidney cortex and liver were the principal tissues for 14C accumulation. Urinary excretion accounted for about 20 and 45% of the cyclic [14C]AMP and cyclic [14C]GMP lost from the plasma, respectively. The 14C found in the kidney and liver was present almost entirely as the respective purine mono-, di-, and trinucleotides. The other principal metabolite was [14C]allantoin, found in the urine and, to a lesser extent, the liver. The urine contained mostly unchanged 14C-labeled cyclic nucleotide. Unlike the findings with the perfused kidney, [14C]uric acid was not a significant metabolite of the 14C-labeled cyclic nucleotides in these in vivo experiments.  相似文献   

20.
Catabolism of adenine nucleotides in suspension-cultured plant cells   总被引:3,自引:0,他引:3  
Profiles of the catabolism of adenine nucleotides in cultured plant cells were investigated. Adenine nucleotides, prelabelled by incubation of suspension-cultured Catharantus roseus cells with [8-14C]adenosine, were catabolized rapidly and most of the radioactivity appeared in 14CO2. Allantoin and allantoic acid, intermediates of the oxidative catabolic pathway of purines, were temporarily labelled. When the cells, prelabelled with [8-14C]adenosine, were incubated with high concentrations of adenosine, the rate of catabolism of adenine nucleotides increased. The results suggest that the relative rate of catabolism of adenine nucleotides is strongly dependent on the concentration of adenine nucleotides in the cells. Studies using allopurinol, coformycin and tiazofurin, inhibitors of enzymes involved in purine metabolism, suggest that participation of AMP deaminase and xanthine oxidoreductase in the catabolism of adenine nucleotides in plant cells. AMP deaminase was found in extracts from C. roseus cells and its activity increased significantly in the presence of ATP. In contrast, no adenosine deaminase or adenine deaminase activity was detected. Qualitative differences in the catabolic activity of AMP were observed between suspension-cultured cells from different species of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号