首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract. Gas exchange measurements were made on single leaves of three C3 and one C4 species at air speeds of 0.4 and 4.0 m s−1 to determine if boundary layer conductance substantially affected the substomatal pressure of carbon dioxide. Boundary layer conductances to water vapour were 0.4 to 0.5 mol m−2 s−1 at the lower air speed, and 1.2 to 1.5 mol m−2 s−1 at the higher air speed. Substomatal carbon dioxide pressures were about 5 Pa lower at low boundary layer conductance in the C3 species, and about 3 Pa lower in the C4 species when measurements were made at high and moderate photosynthetic photon flux densities. No evidence of stomatal adjustment to altered boundary layer conductance was found. Photosynthetic rates at high photon flux densities were reduced by about 20% at the low air speed in the C3 species. The commonly reported values of substomatal carbon dioxide pressure for C3 and C4 species were found to occur only when measurements were made at the higher air speed.  相似文献   

2.
Abstract: Very large numbers (3466 ml−1) of ciliated protozoa were found living beneath the oxic-anoxic boundary in a stratified freshwater pond. Most ciliates (96%) contained symbiotic algae ( Chlorella spp.). Peak abundance was in anoxic water with almost 1 mol free CO2 m−3 and a midday irradiance of 6 μmol photon m−2 s−1. Photosynthetic rate measurements of metalimnetic water indicated a light compensation point of 1.7 μmol photon m−2 s−1 which represents 0.6% of sub-surface light. We calculate that photosynthetic evolution of O2 by symbionts is sufficient to meet the demand of the host ciliates for 13 to 14 hours each day. Each 'photosynthetic ciliate' may therefore become an aerobic island surrounded by anoxic water.  相似文献   

3.
The effects of photon flux density and temperature on net photosynthesis and transpiration rates of mature and immature leaves of three-year-old Japanese larch Larix kaempferi (Lamb.) Sarg. trees were determined with an infrared, differential open gas analysis system. Net photosynthetic response to increasing photon flux densities was similar for different foliage positions and stage of maturity. Light compensation was between 25 and 50 μmol m−2 s−1. Rates of photosynthesis increased rapidly at photon flux densities above the compensation level and became saturated between 800 and 1000 μmol m−2 s−1. Transpiration rates at constant temperature likewise increased with increasing photon flux density, and leveled off between 800 and 1000 μmol m−2 s−1. Photosynthetic response to temperature was determined in saturating light and was similar for all foliage positions; it increased steadily from low temperatures to an optimum range betweeen 15 and 21°C and then decreased rapidly above 21°C. Transpiration rate, however, increased continuously with rising temperature up to the experimental maximum. CO2 compensation concentrations for mature foliage varied between 58 and 59 μl l−1; however, foliage borne at the apex of the terminal leader compensated at 75 μl l−1. None of these data support the claim that Japanese larch possesses C4 photosynthetic characteristics.  相似文献   

4.
The effect of low temperature acclimation at various light levels on the photosynthetic capacity of Solanum species was examined. Two species, Solanum tuberosum L. cv. Red Pontiac and Solanum acaule Bitt., which differ significantly in degree of frost-tolerance and in their ability to acclimate to low temperature stress, were compared. Acclimation conditions included 5/2°C (day/night) temperatures, and either moderate (400 · mol · m−2· s−1) or low (40 · mol · m−2· s−1) photosynthetic photon flux densities. Several parameters of photosynthesis were measured in tissue pieces during acclimation treatments including chlorophyll content, chlorophyll a/b ratios and carbon dioxide-saturated photosynthetic oxygen evolution during light-limited and light-saturated assays.
Most measured photosynthetic parameters of low temperature-grown plants of both species showed greater declines under the moderate light than the low light conditions. Chlorophyll a/b ratios were unchanged after low temperature exposures in both light level treatments. At low temperatures, the cold-sensitive S. tuberosum demonstrated a greater inhibition of photosynthetic capacity in light- and carbon dioxide-saturated assays than S. acaule at all light levels. In addition to a pronounced inhibition at the higher light level, S. tuberosum demonstrated a very strong inhibition of photosynthetic capacity at very low light levels. Our results suggest a correlation between ability to maintain essential metabolic processes during low temperature stress in the presence of moderate light levels and the ability to increase cold tolerance.  相似文献   

5.
The effects of the ratio of Rubisco activase to Rubisco (activase/Rubisco ratio) on light dependent activation of CO2 assimilation were investigated during leaf aging of rice. Changes of photosynthetic CO2 gas exchange rates in relation to step increases of light intensity from two photon flux densities of 60 µmol m−2 s−1 (low initial PFD) and 500 µmol m−2 s−1 (high initial PFD) to saturated PFD of 1 800 µmol m−2 s−1 were measured. These photosynthetic activation processes were considered to be limited by the Rubisco activation rate when analyzed by the relaxation method. The relaxation time of low initial PFD gradually declined from 3 to 33 days after leaf emergence and showed high and negative correlation to the activase/Rubisco ratio. The initial rate of Rubisco activation under low initial PFD linearly correlated to the amounts of Rubisco activase, whereas these were almost constant from 3 to 23 days after leaf emergence. But these correlations could not be recognized in the case of high initial PFD. Moreover, the relaxation times were more sensitive to intercellular CO2 concentration (Ci) under high initial PFD than under low initial PFD, especially, at Ci below 300 µl l−1. These results suggest the involvement of the activase/Rubisco ratio in the photosynthetic activation under relatively low initial PFD, and the limitation of photosynthetic activation under relatively high initial PFD by Rubisco carbamylation during leaf aging of rice.  相似文献   

6.
The floating angiosperm Lemna gibba L. was exposed for 2 h to various combinations of photosynthetic photon flux densities and temperature. The extent of photoinhibition of photosynthesis was assayed by measuring the net CO2 uptake before and after a photoinhibitory treatment, and the time course for photoinhibition was studied. It was found that the maximum quantum yield and the light-saturated rate of CO2 uptake were affected by the interaction between light and temperature during the photoinhibitory treatment. At a constant photon flux density of 650 μmol m−2 s−1 the extent of photoinhibition increased with decreasing temperature showing that even a chilling-resistant plant like L. gibba is much more susceptible to photoinhibition at chilling temperatures. About 60% photoinhibition of the quantum yield for CO2 uptake could be obtained either by a high photon flux density of 1 750 μmol m−2 s−1 and 25°C or by a moderate photon flux density of 650 μmol m−2 s−1 and 3°C. The time courses of recovery from 60% photoinhibition produced by either of these two treatments were similar, indicating that the nature of the photoinhibition was intrinsically similar. The extent of photoinhibition was related to the amount of light absorbed in excess to what could be handled by photosynthesis at that temperature. The vital importance of photosynthesis in alleviating photoinhibition is discussed.  相似文献   

7.
Photosynthetic response of Eragrostis tef to temperature   总被引:1,自引:0,他引:1  
Photosynthetic characteristics of leaves of tef, Eragrostis tef (Zucc.) Trotter, plants, grown at 25/15°C (day/night), were measured at temperatures from 18 to 48°C. The highest carbon exchange rates (CER) occurred between 36 and 42°C. and averaged 27 μmol m−2 s−1. At lower or higher temperatures, CER was reduced, but the availability of CO2 to the mesophyll, measured as internal CO2 concentration, was highest when temperatures were above or below the optimum for CER. In addition, CER and stomatal conductance were not correlated, but residual conductance was highly correlated with CER (r = 0.98). In additional experiments, relative 13C composition for leaf tissue grown at 25, 35 and 45°C averaged -14.4 per mille, confirming that tef is a C4 grass species. Dry matter accumulation was higher at 35 than at 25, and lowest at 45°C. Leaf CER rates increased hyperbolically with increased light when measured from 0 to 2000 μmol m−2 s−1 PPFD. The highest CER, 31.8 μ-mol m-2 s−1, occurred at 35°C and 2000 μmol m−2 s−1 PPFR. At high light, CER at 25 and 35°C were nearly equal because of higher stomatal conductance at 25°C. Residual conductance was, however, clearly highest at 35°C compared to 25 and 45°C treatments. Stomatal conductance and residual conductance were not correlated in either set of experiments, yet residual conductance was always highest when temperatures were between 35 and 42°C across experiments, suggesting that internal leaf photosynthetic potential was highest across that temperature range.  相似文献   

8.
Stomatal closure by ultraviolet radiation   总被引:5,自引:0,他引:5  
The effect of ultraviolet radiation (UV) (255–325 nm) on stomatal closure was investigated on tef [ Eragrostis tef (Zucc) Trotter] in the presence of white light (ca 50 ·mol m−2 s−1). The action spectrum showed that UV (ca 2 ·mol m−2 s−1, half band width about 10 nm) of 285 nm or shorter wavelengths was very efficient in causing stomatal closure. The effectiveness decreased sharply towards longer wavelengths. Radiation of 313 nm or longer wavelengths was practically without effect. Increasing UV intensity increased stomatal resistance. When stronger white light (5 to 9 times stronger than the one used during irradiation) was administered, stomates re-opened rapidly irrespective of whether the UV was on or off, although a subsequent gradual closing tendency was observed when the UV was on.  相似文献   

9.
The effect of long-term exposure to different inorganic carbon, nutrient and light regimes on CAM activity and photosynthetic performance in the submerged aquatic plant, Littorella uniflora (L.) Aschers was investigated. The potential CAM activity of Littorella was highly plastic and was reduced upon exposure to low light intensities (43 μmol m−2 s−1), high CO2 concentrations (5.5 mM, pH 6.0) or low levels of inorganic nutrients, which caused a 25–80% decline in the potential maximum CAM activity relative to the activity in the control experiments (light: 450 μmol m−2 s−1; free CO2: 1.5 mM). The CAM activity was regulated more by light than by CO2, while nutrient levels only affected the activity to a minor extent. The minor effect of low nutrient regimes may be due to a general adaptation of isoetid species to low nutrient levels.
The photosynthetic capacity and CO2 affinity was unaffected or increased by exposure to low CO2, irrespective of nutrient levels. High CO2, low nutrient and low light, however, reduced the capacity by 22–40% and the CO2 affinity by 35-45%, relative to control.
The parallel effect of growth conditions on CAM activity and photosynthetic performance of Littorella suggest that light and dark carbon assimilation are interrelated and constitute an integrated part of the carbon assimilation physiology of the plant. The results are consistent with the hypothesis that CAM is a carbon-conserving mechanism in certain aquatic plants. The investment in the CAM enzyme system is beneficial to the plants during growth at high light and low CO2 conditions.  相似文献   

10.
Rooting ability was studied for cuttings derived from pea plants ( Pisum sativum , L. cv. Alaska) grown in controlled environment rooms. When the cuttings were rooted at 70 μmol m−2 s, 1 (photosynthetic photon flux density) or more, a stock plant irradiance at 100 μmol m−2 s−1 decreased rooting ability in cuttings compared to 5 μmol m−2, s−1, However, cuttings rooted at 160 μmol m−2 s−1 formed more roots compared to 5 (μmol m−2 s−1. Although a high irradiance increased the number of roots formed, it could not overcome a decreased potential for root formation in stock plants grown at high irradiance. Light compensation point and dark respiration of cuttings decreased by 70% during the rooting period, and the final levels were strongly influenced by the irradiance to the cuttings. Respiratory O2 uptake decreased in the apex and the base of the cutting from day 2 onwards, whereas a constant level was found in the leaves. Only the content of extractable fructose, glucose, sucrose and starch varied during the early part of the rooting period. We conclude that the observed changes in the cuttings are initiated by excision of the root system, and are not involved in the initiation of adventitious roots.  相似文献   

11.
The oxygen requirement for stomatal opening in maize plants ( Zea mays L. hybrid INRA 508) was studied at different CO2 concentrations and light intensities. In the absence of CO2, stomatal opening always required O2, but this requirement decreased with increasing light intensity. In darkness, the lowest O2 partial pressure needed to obtain a weak stomatal movement was about 50 Pa. This value was lowered to ca 10 Pa in light (320 μmol m−2 s−1).
On the other hand. in the absence of O2, CO2enabled stomatal opening to occur in the light, presumably due to the evolved photosynthetic O2. Thus, CO2, which generally reduced stomatal aperture, could induce stomatal movement in anoxia and light. The effect of CO2 on stomatal opening was closely dependent on O2 concentration and light intensity. Stomatal aperture appeared CO2-independent at an O2 partial pressure which was dependent on light intensity and was about 25 Pa at 320 umol m−2 s−1.
The presence of a plasmalemma oxidase, in addition to mitochondrial oxidase, might explain the differences in the O2 requirement at various light intensities. The possible involvement of such a system in relation to the effect of CO2 is discussed.  相似文献   

12.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

13.
  An experiment was conducted on intact algal assemblages of stream periphyton to test their response to fluctuating and constant light regimes having the same mean intensity. The light regimes (in μmol·m−2·s−1) were constant light at 100, light fluctuating between 50 and 150 with a period of 5 min, and light fluctuating between 10 and 460 with periods of either 4:1 or 8:2 min. Compared to the rates measured under 100 in μmol·m−2·s−1 constant light conditions, fluctuations ranging between 50 and 150 in μmol·m−2·s−1 with a 5-min period produced a 23% greater rate of photosynthesis. Conversely, fluctuations between 10 and 460 in μmol·m−2·s−1 led to a 59%–74% decrease in photosynthetic activity. Detailed examination of periphytic algal responses to fluctuating light revealed that higher light intensities produced steeper photosynthesis/time slopes, but it was the combined interaction with lower light intensity that ultimately determined overall photosynthetic rate for a given light regime. This study offers compelling evidence that variable light regimes have important consequences for algal photosynthesis in natural streams.  相似文献   

14.
Water (H15O) translocation from the roots to the top of rice plants ( Oryza saliva L. cv. Nipponbare) was visualized over time by a positron-emitting tracer imaging system (PETIS). H15O flow was activated 8 min after plants were exposed to bright light (1 500 μmol m−2 s−1). When the light was subsequently removed, the flow gradually slowed and completely stopped after 12 min. In plants exposed to low light (500 μmol m−2 s−1), H15O flow was activated more slowly, and a higher translocation rate of H15O was observed in the same low light at the end of the next dark period. NaCl (80 m M ) and methylmercury (1 m M ) directly suppressed absorption of H15O by the roots, while methionine sulfoximine (1 m M ), abscisic acid (10 μ M ) and carbonyl cyanide m -chlorophenylhydrazone (10 m M ) were transported to the leaves and enhanced stomatal closure, reducing H15O translocation.  相似文献   

15.
In order to characterize physiological modifications encountered by buckwheat plants exposed to both drought and low-light stresses, seedlings (cv. La Harpe) were exposed under controlled environmental conditions, to a progressive decline in soil volumetric water content under two light regimes: low irradiance (80 µmol m−2 s−1) or moderate irradiance (160 µmol m−2 s−1). Phenological evolution of the whole plant until the macroscopic appearance of the reproductive structure and physiological properties of leaves in relation to their position on the main axis were quantified. Water stress reduced net assimilation rate (NAR) before specific leaf area (SLA) and induced a decrease in stomatal conductance (gl) and carbon isotope discrimination (Δ). Water consumption by stressed plants was similar under both light treatments. Water-stressed plants under moderate irradiance exhibited higher growth, NAR, osmotic adjustment, and lower SLA than plants maintained under low irradiance. However, the former died after 27 days of treatment while the latter still remained alive until the experiment was discontinued (40 days). We concluded that the physiological strategy adopted by the water-stressed plants maintained under moderate irradiance did not afford a long-term advantage in terms of survival. The effects of a combination of low-light and water stress on chlorophyll concentration and carbon isotope discrimination (Δ) are discussed in relation to growth parameters.  相似文献   

16.
Light-dependent inhibition of photosynthetic electron transport by zinc   总被引:2,自引:0,他引:2  
The effects of zinc concentrations up to 400 μ M were examined on three photosynthetic electron transport reactions of thylakoids isolated from Pisum sativum L. cv. Meteor. Zinc (400 μ M ) had no effect on photosystem I mediated electron transport from reduced N,N,N',N'-tetramethyl- p -phenylenediamine to methyl viologen, but inhibited uncoupled electron flow from water to methyl viologen by ca 50% and to 2,6-dichlorophenol-indophenol (DCPIP) by ca 30% at saturating light levels. Zinc inhibition of DCPIP photoreduction was independent of the light intensity to which thylakoids were exposed. Decreasing the photon flux density below 400 μmol m−2 s−1 produced a logarithmic reduction in the zinc-induced inhibition of methyl viologen photoceduction; a stimulation of this reaction was observed below 80 μmol photons m−2 s−1. Increasing light intensity decreased the amount of zinc tightly bound to the thylakoid membranes, but increased the weakly associated zinc which could be removed by washing the membranes with buffer containing Mg2. The results suggest that zinc acts on the photosynthetic electron transport system at two sites. Site 1 is on the oxidizing side of photosystem 2 and the inhibition by zinc is independent of the light intensity. Site 2 is between photosystems 1 and 2 and the electron flow can be positively or negatively affected by zinc depending on the light intensity.  相似文献   

17.
Abstract. Gas exchange measurements were performed to test the hypothesis that failure of stomata to open in senescing leaves of Nicotiana glauca is caused by elevated concentrations of carbon dioxide in the intercellular spaces of leaf mesophyll tissue (ci). Senescing leaves selected for experiments were completely chlorotic and lacked positive rates of photosynthesis. When stomata in detached epidermis from senescing leaves were illuminated in CO2-free air, they opened to similar apertures as those in detached epidermis from nonsenescing leaves. To compare the effects of changes in ci on stomatal responses of the two leaf types, leaf 'flags' of either nonsenescing or senescing leaves were illuminated at a photosynthetic photon flux density of 500 μmol m−2 s−1 in a gas exchange cuvette. Leaf temperatures were maintained at 23.5 ± 0.5°C, and vapour pressure differences between leaves and the air were maintained between 0.70 and 0.75kPa. Ci was adjusted by changing external concentrations of carbon dioxide in air circulating through the cuvette. Conductances and photosynthetic rates of nonsenescing leaves changed in response to changes in ci, but neither the conductances nor the photosynthetic rates of senescing leaves were affected significantly by changes in q. We conclude that guard cells of senescing leaves of Nicotiana glauca do not lose the capacity to respond to changes in carbon dioxide concentration and that increases in ci resulting from declining rates of mesophyll photosynthesis are not the sole cause of maintenance of stomatal closure during leaf senescence. The data suggest that factors external to guard cells may prevent them from responding to changes in carbon dioxide concentrations in intact senescing leaves.  相似文献   

18.
The present study investigates the light acclimation potential of photoautotrophic suspension culture cells of Chenopodium rubrum L. grown in 16 h light/8 h dark cycles. Typical features of sun/shade acclimation could be demonstrated in cultures grown at photon flux densities of 30 and 150 μmol m−2 s−1. Low light grown cells had lower chlorophyll a/b ratios, lower respiration rates and lower light compensation points than high light grown cells. Maximum photosynthetic rate per cell dry weight was highest in low light conditions, indicating that the cells did not enlarge their photosynthetic machinery upon exposure to high light. Transfer of cultures to 800 μmol m−2 s−1 caused photoinhibition as indicated by a decrease in photosynthetic efficiency and by the occurrence of a slowly reversible quenching of variable chlorophyll fluorescence. Extension of the photoinhibitory treatment over six light dark cycles did not result in further dramatic changes of these parameters, whereas the chlorophyll content per dry weight and the chlorophyll a/b ratio decreased. Measurements of photochemical quenching showed that the capability of the cells to dissipate excessive energy had increased during the acclimation process. The presence of the xanthophyll cycle pigments and the operation of the cycle could be demonstrated. In agreement with the putative photoprotective function of antheraxanthin and zeaxanthin these pigments could only be detected under photoinhibitory conditions. Prolonged photoinhibitory treatment resulted in increases in the xanthophyll pigment concentration but not of the potential to deepoxidate violaxanthin. The limited potential of the cells to accumulate zeaxanthin and antheraxanthin might indicate that the xanthophyll cycle is not the main factor determining their resistance to high light stress.  相似文献   

19.
The effects of UV-C (254 nm), UV-A (365 nm) and broad-band UV (280–380 nm) on guard cells of Vicia faba L. cv. Long Pod were investigated in the presence of white light (450 μmol m−2 s−1). UV-C (7 μmol m−2 s−1) was found to cause leakage of 86Rb+ from guard cells, while UV-A (0.3 μmol m−2 s−1) stimulated increased uptake in these cells. A relatively small stimulatory effect was observed by broad-band UV (3 μmol m−2 s−1) during the first 30 min of irradiation with an apparent equilibration of influx and efflux thereafter. Leakage of 86Rb+ from guard cells continued despite the removal of UV-C and an increase in the amount of white light from 450 to 1500 μmol m−2 s−1, suggesting that membranes were irreversibly damaged. Irradiation of guard cells with UV-C for 30, 45 and 90 min indicated that these cells began to be affected already by 30 min UV-C irradiation.  相似文献   

20.
Proliferating cultures of Actinidia deliciosa A. Chev., C. F. Liang and A. R. Ferguson cv. Tomuri (♂) were grown under photosynthetic photon flux density (PPFD) rates ranging from 30 to 250 μmol m−2 s−1 in order to determine certain physiological parameters in vitro: CO2 evolution, photosynthesis at three CO2 atmospheric concentrations (330, 1450 and 4500 μl l−1), fresh and dry matter accumulation and proliferation rate.
A proportional response in dry weight, dry/fresh weight ratios and PPFD was found. The proliferation rate increased up to 120 μmol m−2 s−1 but decreased at higher rates. At the highest PPFD, the CO2 released from cultures and accumulated in the vessels reached 200 μl l−1 of; at the lowest rate the CO2 concentration reached 10500 μl l−1 after 28 days of culture. The photosynthetic rate at 1450 and 4500 μl l−1 of CO2 was nearly 4 times higher than at the lowest concentration tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号