首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
植被综合生态质量时空变化动态监测评价模型   总被引:6,自引:3,他引:3  
钱拴  延昊  吴门新  曹云  徐玲玲  程路 《生态学报》2020,40(18):6573-6583
为了能掌握全国植被综合生态质量的高低及其时空变化,构建了既能反映植被生产力又能反映植被覆盖度的植被综合生态质量指数,建立了植被综合生态质量指数年际对比和多年变化趋势评价模型。利用构建的指数和评价模型,以2017年作为监测评价的当年,以2000—2017年作为评价的多年时段,对全国植被综合生态质量时空变化进行了监测评价。结果表明:(1)2017年全国大部地区植被综合生态质量指数高于2000—2016年多年平均值,生态质量偏好;2017年福建、广西、海南、广东、云南植被综合生态质量位居全国前五位,构建的植被综合生态质量指数及其年际对比模型可以定量反映全国植被综合生态质量的空间差异和年际差异。(2)全国有90.7%的区域2000—2017年植被综合生态质量指数呈提高趋势,东北地区西部、内蒙古东部、华北大部、西北地区东部、西南地区东部、华南西部等地生态质量指数提升明显,构建的植被综合生态质量指数多年变化趋势评价模型可以定量反映植被生态质量的多年变化趋势和幅度。(3)南方大部地区2000—2017年平均年植被综合生态质量指数在50.0以上,北方大部地区在50.0以下;我国中东部大部地区在20.0以上,西部大部地区在20.0以下,表明南方大部地区年植被生态质量好于北方、中东大部好于西部。可见,构建的植被综合生态质量指数及其年际对比和多年变化趋势评价模型,能够监测评价当年和多年全国植被综合生态质量的时空变化,可为掌握全国植被生态质量动态提供模型和方法。  相似文献   

2.
曹云  孙应龙  陈紫璇  延昊  钱拴 《生态学报》2022,42(11):4524-4535
黄河流域处于我国生态保护和建设的重要战略地位,但流域生态环境脆弱,特别是在人类活动和气候变化等因素影响下,流域生态特征逐步发生变化,生态安全面临重大挑战。为了掌握极端气候变化对黄河流域植被生态特征影响,以植被生态质量指数(EQI)为评价指标,利用2000—2020年黄河流域气象数据和遥感数据,采用线性趋势分析、Hurst指数和相关分析等统计方法,分析了黄河流域植被生态质量的时空变化特征,探讨了气候变化背景下极端气温指标和极端降水指标与植被EQI变化关系。结果表明:(1)2000—2020年,黄河流域季尺度和年尺度植被生态质量指数均呈波动增加趋势(P<0.05),其中夏季增加趋势最大,平均每10年生态质量指数增加6.7;(2)2000年以来黄河流域有97.7%的地区植被生态质量指数呈上升趋势,其中趋势率>5/10a的面积占比为37.4%,且流域Hurst指数达到0.8,表明流域植被生态质量指数具有强持续性,未来大部分流域植被将持续改善。(3)流域植被生态质量指数与极端气温类指数以负相关为主,相关系数多介于-0.3—0.3之间,其中霜冻日数(FD0)和夏日日数(SU25)与植被...  相似文献   

3.
生态质量的好坏标志着区域经济社会可持续发展的能力以及社会生产和人居环境稳定可协调的程度,如何定量评价区域生态质量状况与变化,协调其与城镇化的关系,日益成为城市生态学研究的热点.本文选择城市化发展迅速、生态环境问题突出的京津冀城市群为研究对象,基于遥感技术反演京津冀城市群植被覆盖度、生物量和人工表面比例、植被面积百分比等生态参数,结合植被破碎化指数,采用主成分分析法,构建了基于遥感参数的生态质量指数综合模型,定量评价了2000—2010年京津冀城市群生态质量及动态变化.结果表明: 本文构建的生态模型可以更客观、综合地定量评估城市与区域的生态质量状况与变化.2000—2010年,京津冀城市群的生态质量指数从2.38上升到2.84,增幅达19.3%.其中,2000—2005年的增幅(12.2%)高于2006—2010年(7.2%).从空间分布来看,生态质量指数的高值区位于京津冀北部,西部、东南部较低.不同城市的生态质量状况及变化趋势不同.承德的生态质量状况最好,并显著高于其他城市;其次为北京、秦皇岛和保定;天津的生态质量最差.承德、北京、秦皇岛和保定的生态质量高于京津冀地区的平均水平;廊坊、天津和沧州的生态质量明显低于平均水平.2000—2010年间,除唐山外,其他城市的生态质量均呈好转趋势.其中,沧州、衡水的生态质量指数提升最显著,增幅分别达520.5%和171.8%.  相似文献   

4.
植被是陆地生态系统的主体,是保障生态质量的基础,也是基于自然的生态系统增汇、实现“碳中和”的重要利器。植被是生态质量评价的核心要素,但目前的生态质量评价研究中所用到的植被指标多是通过遥感反演或者气象指数模型计算得到的,而基于典型生态系统尺度地面调查的植被观测数据更直接、更准确,数据也很丰富,却很少用于生态质量评价,也缺乏系统的评价指标体系。通过文献研究、专家研讨和问卷调查,并借鉴群落退化演替和生态系统长期监测研究的理论基础,构建基于地面调查的植被生态质量综合评估指标体系。该指标体系整体分为三级,一级综合指数由群落结构指数、物质生产指数、生物多样性指数、群落发展或者演替趋势4个二级分项指标构成,二级分项指标由12—14个三级指标组成,不同植被类型各有其特征指标。该体系将完善我国多尺度陆地生态系统的生态质量评价指标体系,为新时期国家生态质量评价提供科学建议,为我国生态文明建设提供技术支撑。  相似文献   

5.
京津冀地区城市化对植被覆盖度及景观格局的影响   总被引:8,自引:0,他引:8  
王静  周伟奇  许开鹏  颜景理 《生态学报》2017,37(21):7019-7029
定量研究了2000—2010年,京津冀地区植被覆盖度及其景观格局的动态变化,揭示了城市化进程对植被景观的干扰过程及生态质量的影响。结果表明:(1)2000—2010年,城市化进程显著是京津冀城市群土地变化的一大特点,人工表面面积从2000年的1.79×10~4km~2增加至2.16×10~4km~2,增幅高达21.16%;(2)京津冀平均植被覆盖度呈增加趋势但不显著(P=0.46),存在明显的时空动态差异。在覆盖度结构上形成了以中低和中植被覆盖度为主导的格局;(3)从景观空间格局变化来看,中低、高覆盖度区域植被景观更加破碎,而低、中等覆盖度区域的植被面积增加,景观破碎度减小;尤其是低植被覆盖度为主的城市区域,景观格局变化幅度大,表现为绿地面积有所增加,景观破碎化程度降低,生态质量有所改善;(4)在整个研究区范围,城市化对区域植被覆盖度存在负面影响,表现为城市化程度与区域平均植被覆盖度存在负相关(P=0.08);但是在低植被覆盖度的区域(主要为城市区域),城市化程度与植被覆盖面积呈显著正相关(P0.001),表明城市区域在城市化进程中植被覆盖面积有所提高,生态质量有所改善,与城市化过程中,日益重视城市绿地的建设有关。  相似文献   

6.
曹永强  周姝含  杨雪婷 《生态学报》2022,42(14):5966-5979
区域归一化植被指数(NDVI)变化特征对环境容量和生态发展方向有重要指示作用。基于SPOT/VEGETATION NDVI数据和ESA CCI-LC植被分类数据,利用Theil-Sen+Mann-Kendall、变异系数、Hurst指数和相关性分析方法,对辽宁省2000—2019年不同植被类型归一化植被指数时空变化特征和气候因子之间的响应关系进行分析。结果表明:(1)NDVI均值呈现从乔木到草原逐渐降低的趋势,不同植被类型在生长季具有不同的生长习性;(2)各植被类型都呈增加趋势,结合Hurst指数和Sen趋势,辽宁省36.26%的植被将趋于改善,约有61.51%的植被将趋于退化;(3)变异系数结果表明:所有植被类型中以乔木植被最为稳定,草原型植被最不稳定。(4)辽宁省各植被类型NDVI与降水显著正相关,与气温相关性相对较低。结果可为辽宁省生态评价和碳循环研究提供植被覆盖动态参考。  相似文献   

7.
倪健  夏洁  程琦 《生态学报》2022,42(14):6001-6015
本文回顾总结了我国植被地理学发展的历史,展望了其从传统植被地理学到功能地理学的未来研究趋势。作为研究植被地理分布规律的一门科学,植被地理学在我国经历了与社会经济发展密切相关的四个阶段:早期起步阶段,主要是新中国成立前(1920年代—1949)的植物地理学和植被地理学的零星工作;初期成长阶段,主要是新中国成立后至改革开放前(1949—1980)的传统植被地理学研究;中期迅速发展阶段,主要包括改革开放后至经济迅速发展时期(1980—2000),在全球气候变化国际研究背景下的植被地理学研究;近期转型与拓展阶段,主要是国民经济平稳发展及信息时代(2000—至今),面向全球环境变化的植被地理学研究的纵深发展。经过近百年的发展,在植被综合区划与生态功能区划、中国植被分类系统订正、中国植被图与植被志编纂、古植被地理学、植被地理模拟预测与情景分析、植物功能性状和生态化学计量学的功能植被地理学等6个方面取得了可喜成果。今后,需要在以下4个方面开展更广泛的精细与纵深研究:加强更多精细化的植被地理学研究,编纂新一代中国植被图与中国植被志;深入开展人类干扰的植被地理学研究;以植物性状研究为契机,拓展宏观功能植...  相似文献   

8.
王超  侯鹏  刘晓曼  袁静芳  周倩  吕娜 《生态学报》2023,(21):8903-8916
植被覆盖变化是气候变化和生态环境变化的双重指示器,如何量化全国尺度植被变化、评估生态修复成效,成为当前陆地表层生态系统研究领域共同的科学问题。利用2000—2020年的植被覆盖度(FVC)数据,采用增幅变化分析、Theil-Sen Median趋势分析、稳定性分析方法,对中国六大重要生态系统保护和修复工程区域的自然植被覆盖度本底和时空变化特征进行了研究,并对不同区域植被覆盖度变化与气温、降水的相关性进行了分析,以期掌握我国生态系统保护和修复“家底”。结果表明:(1)2020年,六大区域平均植被覆盖度为27.66%,2000—2020年,黄河重点生态区、北方防沙带和青藏高原生态屏障区增幅分别为54.4%、34.6%和21.8%,是全国范围平均植被覆盖度增幅的1.04—2.59倍;长江重点生态区、东北森林带和南方丘陵山地带增幅分别为18.0%、13.7%和12.9%,均低于全国增幅,我国西北方较南方改善更明显。(2)2000—2020年,六大区域植被覆盖度变化总体呈增加趋势。黄河重点生态区、东北森林带、南方丘陵山地带和长江重点生态区增加区域面积占比均超过60%,北方防沙带和青藏高原生态屏障...  相似文献   

9.
苏伟  孙中平  李道亮  朱翔  郭祥云 《生态学报》2009,29(11):5860-5868
矿区土地复垦是目前土地整理的一项重要内容,也是矿区可持续发展实现的保障.矿区植被及其恢复状况是矿区土地复垦质量的一种重要的指示器,表征土地复垦的程度与质量.研究基于1975~2000年共4期遥感影像,构建植被覆盖度指数,考察辽宁省阜新市海州露天煤矿排土场25a来植被生长状况及时空变化特征.分析结果表明:1975~2000年间,研究区植被处于不断生长、逐渐恢复的状态,并存在明显的空间差异.时间尺度上,植被覆盖度较高(0.4~0.6)的区域所占面积比例从1975年的14.04%增长到2000年的34.83%;空间分布上,植被覆盖度低(0~0.25)的区域多分布在台地之间相连接的边坡位置上,植被覆盖度较高(0.25~0.6)的区域则分布于台地内部的平坦地面上.  相似文献   

10.
温晓金  刘焱序  杨新军 《生态学报》2015,35(13):4377-4389
植被恢复是建设生态型城市的重要途径,通过明晰植被恢复空间分异与潜在的植被恢复力,有助于指导可持续性生态城市的建设。以商洛市为例,基于MODIS归一化植被指数(NDVI)数据,利用Sen+Mann-Kendall模型和Hurst模型研究2000—2013年商洛市植被恢复趋势及未来持续能力,并采用地理加权回归模型(GWR)分析市域尺度内植被恢复空间分布的影响因素。结果表明:(1)2000—2013年商洛市的植被恢复效果明显,植被覆盖增大的区域占总面积的82.5%,减小的区域占总面积的9.4%;(2)2000—2013年,受城镇的距离及土地集约程度等人文因素的影响,西北部植被恢复略好于东南部。(3)Hurst指数显示,商洛市未来植被恢复的持续性不强。48.0%的区域未来植被覆盖可能会呈现由改善变退化的现象,而持续增大的区域仅占36.7%,植被恢复力仍有待加强。(4)市域尺度上,植被恢复趋势空间差异形成的自然因素包括高程、坡度、坡向、与水体的距离,而人文因素则由距离城镇的距离和土地利用集约度所主导。地理加权回归显示各区县植被恢复趋势的空间影响因素及其强度并不一致,充分说明人地关系变化对植被恢复作用机理的复杂性。  相似文献   

11.
植被净初级生产力(net primary productivity,NPP)是判定生态系统质量状况和碳汇的重要因子,反映了植被群落的生产能力和生态过程,对调节全球碳平衡、增强生态服务功能具有重要的意义.本文基于MODIS卫星遥感资料和改进的CASA模型,利用2000-2019年MOD17A3HGF的NPP年际数据和气象...  相似文献   

12.
净初级生产力(NPP)是表征生态系统质量与功能的核心指标,监测生态工程区NPP的时空变化是生态建设成效评估的重要内容。本文利用2000—2015年时序遥感数据与光能利用效率模型(CASA),分析了锡林郭勒盟NPP的时空变化以及气温与降水的影响。结果表明:2000—2015年锡林郭勒盟的NPP为108.66~359.74 g C·m-2·a-1,多年平均值为254.18 g C·m-2·a-1,年均增加13.47 g C·m-2;锡林郭勒盟的NPP由东向西递减趋势明显,40.13%的区域NPP高于280 g C·m-2·a-1,且集中在太仆寺旗、多伦县、西乌珠穆沁旗和东乌珠穆沁旗等地区;相比2000年,2015年锡林郭勒盟有94.56%的区域NPP升高,其中33.95%的区域NPP增幅高于120 g C·m-2;锡林郭勒盟的NPP与降雨量呈显著正相关,31.18%的区域NPP与气温呈正相关,NPP与年均气温及降水量的复相关系数为0.59。综合来看,锡林郭勒盟约55%的区域NPP明显受气候因素驱动,其生态修复治理应充分利用气候变化的积极影响,而其他区域则需注重施加生态工程措施。  相似文献   

13.
植被净初级生产力(NPP)是草原湿地生态系统碳收支平衡和气候变化的核心内容之一。本研究基于植被指数、气象数据(降水和气温)、植被类型数据,利用CASA模型对若尔盖草原湿地1999—2015年NPP进行估算,分析了若尔盖草原湿地NPP时空格局特征及其与气候因子的关系。结果表明: NPP实测值与模拟值之间显著相关,R2为0.78,均方根误差为120.3 g C·m-2·a-1;研究区年均和生长季(4—9月)NPP分别为329.0、229.4 g C·m-2·a-1,年际间波动明显,以2.3、1.6 g C·m-2·a-1的微弱趋势下降,不同植被类型的年均及生长季NPP的年际波动与整个研究区的波动趋势基本一致;年均和生长季NPP的变化斜率分别为-21.3~18.7、-31.5~23.1 g C·m-2·a-1,显著增加的面积分别占研究区总面积的0.3%和0.7%,主要分布于森林覆盖区和湿地生态补偿区;显著下降的面积分别占研究区总面积的1.4%和6.4%,主要分布于人类活动集中的地区;研究区不同植被的固碳能力存在差异,其中,森林最强,草地次之,湿地最弱;降水是影响草原湿地植被NPP的主导气候因子。  相似文献   

14.
黄土高原草地净初级生产力时空动态及其影响因素   总被引:4,自引:0,他引:4  
利用光能利用效率模型(Carnegie-Ames-Stanford approach,CASA)模拟2000-2015年黄土高原草地净初级生产力(NPP),分析黄土高原草地NPP的时空动态、NPP变化稳定性和持续性特征,从植被类型、地形因素、气候变化和人类活动4个方面探讨黄土高原草地NPP的影响因素.结果表明:黄土高原草地NPP的平均值为202.93 g C·m^-2·a^-1,其年际变化特征呈现显著增加的趋势,平均年增加速率为2.43 g C·m^-2·a^-1;分布具有明显的空间异质性,大体呈南高北低的状态.黄土高原草地NPP呈增加趋势的区域占总草地面积的91.2%,主要分布在陕西省的大部分地区、甘肃陇东及陇中地区和青海等地.草地NPP变化较为稳定的区域主要集中在鄂尔多斯的南部地区、陕北地区和甘肃等地.大部分地区草地NPP未来的变化趋势与过去一致,且陕西省的大部分地区以及甘肃省的陇中及陇东地区的草地NPP将呈现持续显著增加的趋势.坡面草地的平均NPP值最高,为703.37 g C·m^-2·a^-1;而高山亚高山草地NPP平均值最低,为57.28 g C·m^-2·a^-1.高海拔地区的草地NPP较高,而平原及丘陵地带草地NPP相对较低.研究期间黄土高原降水量的增加对草地NPP的增加具有明显的促进作用;人类活动诸如过度放牧状况的改善以及退耕还草等政策的实施对黄土高原草地NPP的增加也具有重要作用.  相似文献   

15.
草地是陆地生态系统重要的组分,利用遥感技术在宏观尺度分析天然草原长势变化与其驱动力是了解草地生态状况的重要手段。本研究基于气候模型和光能利用率模型分别模拟2000—2018年锡林郭勒草原植被潜在植被净初级生产力(NPP)和实际NPP,以它们的差值作为由人类活动导致的NPP残损值,并利用最小二乘法在像元尺度分析锡林郭勒草原NPP时空变化规律以及气候和人类活动对NPP的驱动作用。结果表明: 2000—2018年间,锡林郭勒草地NPP在空间上呈由西向东递增分布规律,年均NPP为271.54 g C·m-2·a-1,NPP上升(草地恢复)面积为3.65万km2,NPP下降(草地退化)面积为5.99万km2;潜在NPP在温度和降水的驱动下趋于上升趋势,年均上升6.5 g C·m-2·a-1,表明研究期间区域气候(降水和温度)对锡林郭勒草原NPP的提升具有积极作用,草地退化的驱动力主要来自人类活动;人类活动导致的研究区NPP残损值呈由东向西、由南向北递减分布,其中,乌珠穆沁草甸草原及南部典型草原残损值最高;采矿、开垦等人类活动对草地NPP的影响最明显。  相似文献   

16.
青藏高原是我国乃至全世界的“气候变化实验室”,在气候变化驱动下,青藏高原植被净初级生产力(NPP)发生了显著变化。本研究利用归一化植被指数、数字高程、年降水量和年气温等数据,探究2000—2020年青藏高原植被NPP的时空变化特征及其与气候因子的关系。结果表明: 2000—2020年,青藏高原植被NPP呈显著增加趋势,NPP增加速率为1.67 g C·m-2·a-1。青藏高原植被NPP空间分布表现为从东南向西北逐渐递减,该分布格局与气温、降水量的空间分布格局基本吻合。植被NPP与气温和降水量变化显著正相关。暖湿化气候变化趋势是促进植被NPP显著增加的重要动力,如果气候持续更暖更湿,青藏高原植被NPP将会持续增加。  相似文献   

17.
宁夏是我国重要的农牧交错区,开展该地区植被净初级生产力(NPP)时空变化及其驱动因素研究对于认知该地区NPP变化趋势及主导因素、揭示其植被恢复状况及成因具有重要作用。本研究基于MODIS NPP数据,利用Theil-Sen Median趋势分析、相关分析、叠加分析等方法分析宁夏植被NPP的时空变化及驱动因素。结果表明: 2000—2019年,宁夏植被NPP总体呈波动上升趋势,其线性增长速度为5.46 g C·m-2·a-1。研究区植被NPP在空间上呈现两高两低的分布特征,以南部山区最高,其次为引黄灌区,中部干旱带丘陵区和贺兰山一带最低。研究区84.2%的植被NPP处于显著恢复中,主要分布在中部及南部山区丘陵地,植被NPP随海拔变化显著,受地形影响明显。宁夏植被NPP重心总体向正南方向移动,南部植被NPP的增量和增速大于北部。宁夏地区年降水量呈增加趋势,年均温微弱降低,植被NPP主要受降水量的显著影响(R2=0.291),年均温与植被NPP相关性不显著。研究区96.9%的区域处于植被恢复状态,受气候变化和人类活动共同促进。  相似文献   

18.
为评估吉林省落叶松林的生产力现状并为我国森林生态系统生产力和植被监测研究提供基础数据,以吉林省落叶松林为研究对象,基于吉林省及其周边100 km范围内41个气象站点资料,采用LPJ-DGVM模型模拟了2000—2019年吉林省落叶松林近20年的净初级生产力,并采用线性回归趋势分析、变异系数、Hurst指数和相关性分析法对其时空变化、稳定性及其与气候因子的相关关系进行了分析。结果表明:(1)2000—2019年吉林省落叶松林年均净初级生产力(NPP)为592 g C m-2 a-1,年均增长率为2.81%,随时间推移呈现波动增长的趋势(β=14.55,R~2=0.784,P<0.01)。(2)NPP变异系数为0.07—2.33,均值为0.48,除幼龄林外,整体波动较小。Hurst指数介于0.441—0.849之间,均值为0.612,未来吉林省落叶松林NPP呈增加趋势。(3)吉林省落叶松林NPP存在明显的空间异质性,北部和南部区域NPP较高,是近20年NPP增长较快的区域。(4)2000—2019年吉林省落叶松林年均NPP与年总降水、生长季...  相似文献   

19.
黄土高原草地净初级生产力时空趋势及其驱动因素   总被引:2,自引:0,他引:2  
草地净初级生产力是生态系统碳循环的关键环节和重要组成部分。本研究使用分段线性回归分析和Pearson相关分析,分析了黄土高原2000—2015年间土地利用类型未改变的草地净初级生产力(NPP)的变化趋势及气候核心因子(年降水量、年强降水量、年有效降水日数、年平均温度、年最高温度、年最低温度)对NPP变化的影响,并借助增强回归树逐像素分析了草地NPP的驱动因素。结果表明: 2000—2015年,研究区草地NPP总体呈增加趋势,显著增加区域占51.3%。年均NPP的变化速率从2000—2004年间的15.23 g C·m-2·a-1下降到2005—2015年间的3.58 g C·m-2·a-1。黄土高原草地NPP与降水指标呈显著正相关,与温度指标主要呈负相关。年降水量是研究区草地NPP变化最重要的驱动因素且具有最高的平均相对贡献率,年最高温度是高原中部草地NPP的主要限制因素,年最低温度主要影响高原西部高海拔地区的草地生长。  相似文献   

20.
陈智 《应用生态学报》2019,30(5):1625-1632
中国东北森林生态系统是重要的碳汇功能区,也是对环境变化响应的敏感区,分析其植被生产力和碳素利用效率的变化特征及其对气候变化的响应对于区域碳收支的准确评估和预测具有重要意义.本研究利用MODIS的长期监测数据,结合植被类型分布数据,对中国东北森林生态系统2000—2015年生产力(净初级生产力NPP、总初级生产力GPP)和碳素利用率(NPP/GPP)时空变化特征进行分析.结果表明: 研究期间,东北森林生态系统平均NPP和GPP分别为346.4和773 g C·m-2·a-1,平均NPP/GPP为0.45.不同森林类型的NPP和GPP依次为针阔混交林>落叶阔叶林>针叶林,NPP/GPP在不同森林类型间无显著差异.NPP和GPP呈现出东南高、西北低的空间分布特点.2000—2015年间,东北森林生态系统NPP、GPP和NPP/GPP呈波动增加趋势,固碳能力逐步增强.NPP、GPP和NPP/GPP的变化趋势和变化速率表现出空间差异性,在大兴安岭南部地区显著增加,在大兴安岭北部地区显著下降,其余区域呈微弱增加趋势.与气候因子的相关性分析表明,年降水量的增加是驱动东北森林生态系统NPP、GPP和NPP/GPP波动增加的主要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号