首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Clavicipitaceous fungal endophytes of the genera Epichloë and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.  相似文献   

2.
The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.  相似文献   

3.
Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).  相似文献   

4.
Shake flask cultures ofClaviceps paspali (Stev. et Hall) andClaviceps purpurea (Fr.) Tul. on simple synthetic medium have been studied. Both strains grown in the absence of added tryptophan accumulate extra endogenous tryptophan. A certain concentration of cell-pool tryptophan is needed to promote alkaloid synthesis. Alkaloid production commences while tryptophan synthetase activity is increasing. In the alkloid-producing phase cell-pool tryptophan shows a single minimum while the change in level of cell-protein tryptophan is negligible. Alkaloid formation is suggested to reflect a regulatory device to keep endogenous tryptophan balanced. By adding amitrole the alkaloid spectrum is changed. The tryptophan-histidine cross-pathway probably serves a useful function inthe biosynthesis of ergot alkaloids.  相似文献   

5.

Background  

The phytopathogenic ascomycete Claviceps purpurea causes the ergot — serious disease of rye and grasses. Its sclerotia containing toxic ergot alkaloids decrease a quality of cereal grain. The fungus infects young, unfertilized ovaries of the hosts. Due to the very short time in which infection can occur, growth rate of mycelium can play some role in the infection process. Resistance genes to C. purpurea have not been found so far.  相似文献   

6.
The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.  相似文献   

7.
The potential of the polymerase chain reaction for the detection of ergot alkaloid producers among microscopic fungi of the generaPenicilliumand Clavicepswas evaluated. Twenty-three strains of various species of fungi with a previously studied capacity for alkaloid production were used. The internal fragment of the gene encoding 4-dimethylallyltryptophan synthase, the enzyme catalyzing the first step in the biosynthesis of ergot alkaloids, was amplified using degenerate primers. This approach revealed an about 1.2-kb specific DNA fragment in micromycetes synthesizing ergot alkaloids with complete tetracyclic ergoline system. Microorganisms that produce alkaloids with modified C or D ergoline rings, as well as -cyclopiazonic acid, did not yield the PCR fragment of the expected size. This fragment was also not found in fungi incapable of ergot alkaloid production.  相似文献   

8.
Clavicipitaceous fungal endophytes of the genera Epichlo? and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.  相似文献   

9.
Abstract

The morphology, biochemistry, and physiology studies during development of Claviceps purpurea fungi clearly demonstrate that alkaloid synthesis is linked to a specific stage of the fungal life cycle. In nature, ergot alkaloids are synthesized in the course of developing sclerotia, while in submerged cultures, lacking sexual reproduction, alkaloid synthesis proceeds in sclerotia-like cells. Highly active submerged strains could be obtained by combination of mutagens with a different mode of action as well as by somatic hyphal anastomoses or efficient protoplast fusions to obtain the parasexual cycle. Fused strains not only retained the biosynthetic activity of parent strains but produced even much higher amounts of alkaloids. In our strains, the appropriate morphology always corresponded to high productivity. Furthermore, the form of cell differentiation was typical for each particular strain. When comparing active and inactive strains, measurements of qualitative and quantitative changes in mycelium composition revealed different metabolic patterns and certain characteristics necessary for efficient alkaloid production. Evaluation of activities of some enzymes from the central metabolic pathways, which generate the basic intermediates for ergot alkaloid synthesis also contributed to the overall knowledge of mechanisms involved.  相似文献   

10.
Role of weed grasses in the etiology of ergot disease in wheat   总被引:1,自引:0,他引:1  
Forty isolates of the ergot fungus Claviceps purpurea collected from nineteen gramineous host species were used to inoculate male-sterile wheat. The isolates segregated into highly and weakly infective groups. The marked pathogenicity, on wheat, of the fungal strains occurring on certain grass species has been correlated with distinctive patterns of alkaloids within the sclerotia. Analysis of the alkaloid content of 241 samples of naturally occurring ergot sclerotia from twenty gramineous host species has confirmed the existence of host restricted strains characterized also by their particular spectra of alkaloids. Similarity of the alkaloid spectra of ergot sclerotia from blackgrass (Alopecurus myosuroides) and wheat, ease of cross-infection from blackgrass to wheat and an association between blackgrass infestation and the occurrence of ergot sclerotia in surveyed wheat crops have confirmed the hypothesis that the presence of this early flowering weed grass increases the risk of high levels of ergot infection in wheat.  相似文献   

11.
Penicillium citrinum VKM F-1079 was found to produce clavine ergot alkaloids and citrinin, a secondaryO-heterocyclic metabolite. Citrinin was produced in the idiophase, whereas the production of ergot alkaloids paralleled fungal growth. The addition of manganese ions to the growth medium stimulated the biosynthesis of both citrinin and ergot alkaloids. Zinc ions stimulated only citrinin synthesis. The presence of these microelements in the growth medium influenced the proportion between the ergot alkaloids synthesized. Copper, manganese, and iron ions slightly affected fungal growth and alkaloid production. The effect of microelements on the main kinetic parameters of growth and alkaloid production was studied.  相似文献   

12.
The fungus P. citrinum produces secondary metabolites, clavinet ergot alkaloids (EA), and quinoline alkaloids (quinocitrinines, QA) in medium with various carbon and nitrogen sources and in the presence of iron, copper, and zinc additives. Mannitol and sucrose are most favorable for EA biosynthesis and mannitol is most favorable for QA. Maximum alkaloid production is observed on urea. Iron and copper additives in the medium containing zinc ions stimulated fungal growth but inhibited alkaloid biosynthesis. The production of these secondary metabolites does not depend on the physiological state of culture, probably due to the constitutive nature of the enzymes involved in biosynthesis of these substances.  相似文献   

13.
The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., H?lter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.  相似文献   

14.
Many cool-season grasses harbor fungal endophytes in the genus Neotyphodium, which enhance host fitness, but some also produce metabolites--such as ergovaline--believed to cause livestock toxicoses. In Claviceps species the first step in ergot alkaloid biosynthesis is thought to be dimethylallyltryptophan (DMAT) synthase, encoded by dmaW, previously cloned from Claviceps fusiformis. Here we report the cloning and characterization of dmaW from Neotyphodium sp. isolate Lp1, an endophyte of perennial ryegrass (Lolium perenne). The gene was then disrupted, and the mutant failed to produce any detectable ergovaline or simpler ergot and clavine alkaloids. The disruption was complemented with the C. fusiformis gene, which restored ergovaline production. Thus, the biosynthetic role of DMAT synthase was confirmed, and a mutant was generated for future studies of the ecological and agricultural importance of ergot alkaloids in endophytes of grasses.  相似文献   

15.
Abstract

Diets containing 0, 1 and 10 g ergot (Claviceps purpurea) per kg, corresponding to mean total alkaloid contents of 0.05, 0.60 and 4.66 mg/kg (sums of ergometrine, ergotamine, ergocornine, α-ergocryptine, ergocristine, ergosine and their -inine isomers analysed by a HPLC-method), were each fed ad libitum to 12 pigs in the BW range of 30–115 kg to study the effect of ergot-contaminated feed on growth and slaughtering performance and the carry over of ergot alkaloids. Additionally, balance trials were conducted to investigate the digestibility of nutrients. Tendencies towards reduced feed intake and BWG were observed at a feeding level of 4.66 mg total alkaloids per kg diet. Typical symptoms of ergot poisoning were not observed. Heart and spleen weights showed significant linear increases. Differences in carcass quality due to dietary treatment were not detected. No genuine ergot alkaloids were found in physiological samples. The balance trials demonstrated a significantly decreased protein digestibility for the most highly supplemented diet.  相似文献   

16.
17.
18.
Ultrathin sectioning of submerged mycelium of Claviceps purpurea Tul. producing clavine alkaloids revealed yeast-like budding resulting in asexual sporesblastospores. These deciduous spores were born by extended hyphal cells and retained the same ultrastructure of cell organelles. Both the extended hyphae and the blastospores resembled the cells of ergot sclerotial tissue. A surface culture of C. purpurea Tul. producing no alkaloids was used as a reference.  相似文献   

19.
Hydrothermal treatments are primarily used to increase the digestibility of nutrients and therefore to improve the feeding value of feedstuffs mainly for non-ruminants. Other positive side effects may occur, e.g. a decrease in toxicity of feed contaminated with mycotoxins. To study such effects, 4 batches of rye containing different percentages (0.8, 4.2, 8.3 and 25%) of ergot (Claviceps purpurea) were expanded and ergot alkaloid contents were analysed. After pre-conditioning of each batch by steam exposure for approx. 2 min, at 95 °C and 17% moisture, the material was expanded for approx. 5 sec. at 120 °C, 18% moisture, 40 bar mechanical pressure and 20 kWh/t mechanical energy input. Samples were collected before and after pre-conditioning and after expanding. Ergot alkaloids were analysed by HPLC. Analysis includedErgometrine, Ergotamine, Ergocornine, Ergocryptine, Ergocristine, Ergosine and their respective-inine isomers, the sum of these 12 ergot alkaloids was referred to as the total alkaloid content. On average, the hydrothermal treatment (pre-conditioning and expanding) caused a decrease of the total ergot alkaloid content of approx. 10%. Except for the batch containing 0.8% ergot, the efficiency of the hydrothermal treatment decreased with increasing ergot concentration in the batches. In general, the hydrothermal treatment changed the proportions of the ergot alkaloid isomers since the percentages of the-inine isomers of the total ergot alkaloid contents were increased with reduced-ine percentages. Whether this alteration is of toxicological relevance should be evaluated in animal experiments.  相似文献   

20.
Neotyphodium and Epichloë species (Ascomycota: Clavicipitaceae) are fungal symbionts (endophytes) of grasses. Many of these endophytes produce alkaloids that enhance their hosts’ resistance to insects or are toxic to grazing mammals. The goals of eliminating from forage grasses factors such as ergot alkaloids that are responsible for livestock disorders, while retaining pasture sustainability, and of developing resistant turf grasses, require better understanding of how particular alkaloids affect insect herbivores. We used perennial ryegrass Lolium perenne L. (Poaceae) symbiotic with Neotyphodium lolii × Epichloë typhina isolate Lp1 (a natural interspecific hybrid), as well as with genetically modified strains of Lp1 with altered ergot alkaloid profiles, to test effects of ergot alkaloids on feeding, growth, and survival of the black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), a generalist grass‐feeding caterpillar. Neonates or late instars were provided clippings from glasshouse‐grown plants in choice and rearing trials. Wild‐type endophytic grass showed strong antixenosis and antibiosis, especially to neonates. Plant‐endophyte symbiota from which complex ergot alkaloids (ergovaline and lysergic acid amides such as ergine) or all ergot alkaloids were eliminated by endophyte gene knockout retained significant resistance against neonates. However, this activity was reduced compared to that of wild‐type Lp1, providing the first direct genetic evidence that ergot alkaloids contribute to insect resistance of endophytic grasses. Similarity of larval response to the two mutants suggested that ergovaline and/or ergine account for the somewhat greater potency of wild‐type Lp1 compared to the knockouts, whereas simpler ergot alkaloids contribute little to that added resistance. All of the endophyte strains also produced peramine, which was probably their primary resistance component. This study suggests that ergot alkaloids can be eliminated from an endophyte of perennial ryegrass while retaining significant insect resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号