首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The strains of Newcastle disease virus (NDV) can be divided into two distinct clades: class I and class II. At present, limited molecular epidemiological data are available for the class I virus at live bird markets (LBMs). Knowing the genomic and antigenic characteristics of class I NDVs might provide important insights into the evolution dynamics of these viruses. In this study class I NDVs isolated from LBMs in Eastern China between 2008 and 2012 were characterized.

Results

We characterized 34 class I NDVs genetically and 15 of the 34 NDVs pathologically which originated from geese, chickens and ducks at live bird markets. Based on the older classification system, twelve of fourteen strains isolated from 2008 to 2010 belonged to sub-genotype 3b. However, the rest 22 strains formed a separate novel cluster in genotype 3, which was designated as sub-genotype 3c. When based on the new classification system, sub-genotype 3b was classified into sub-genotype 1a and the sub-genotype 3c was classified into sub-genotype 1b. Over 62% (21/34) of the viruses were chicken-origin and only 13 isolates were waterfowl-origin. The Cross-neutralization reactions between CK/JS/05/11, CK/JS/06/12 and the vaccine strain LaSota showed significant antigenic differences between them.

Conclusions

Currently, sub-genotype 3c (or 1b) NDVs are the most frequently isolated classI strains at LBMs in Eastern China., and the class I NDVs has transferred from waterfowls to chickens and circulated in chicken flocks extensively.
  相似文献   

2.
2009~2011年从北方发病鸡群和鸭群中分离出3株新城疫病毒(Newcastle disease virus,NDV)。通过致病性指数测定及交叉血凝抑制试验初步分析了3个毒株的毒力和相互之间的同源性。选取鸡源分离株SDLY01与新城疫疫苗株(LaSota)进行了交叉保护试验,选取鸭源毒株SD03对樱桃谷鸭进行攻毒实验,同时设计引物对3个毒株进行了全基因组测序,并与36株NDV参考株进行了分子进化分析。结果表明3个分离株F蛋白裂解位点的氨基酸序列均为112R-R-Q-K-R-F117符合强毒株的序列特征,并与致病性指数测定结果相符。交叉血凝抑制试验发现3个分离株与疫苗株LaSota 的抗原同源性较低为82.5%~89.4%,两个鸡源分离株间的抗原同源性为90%,而鸭源毒株SD03与鸡源毒株SDSG01同源性为100%。交叉保护试验和攻毒实验结果显示传统的LaSota疫苗能对SDLY01流行株提供100%免疫保护,但第5天仍检测到排毒;鸭源毒株SD03对樱桃谷鸭不致病,但能检出排毒,排毒期最长为5d。全基因组测序与分析表明3个毒株基因组长度均为15192bp,属于基因Ⅶd型毒株,与同期流行的鹅源及鸭源NDV毒株之间全基因组核苷酸序列具有高度的同源性,揭示鸭源、鹅源NDV与鸡源NDV在遗传学和流行病学上密切相关。  相似文献   

3.
Data were obtained which indicated the possible cause of the defective elution from erythrocytes of the mutant virus (NDV(pi)) isolated from L cells persistently infected with the Herts strain of Newcastle disease virus (NDV(o)). The chicken erythrocyte receptors for the mutant and wild-type viruses were equally sensitive to the action of Vibrio cholera filtrate neuraminidase; this suggests that the failure of NDV(pi) to elute from chicken erythrocytes is not due to a specific neuraminidase-resistant receptor for this virus on the erythrocyte membrane. There was no difference in the enzyme content of the intact virions of NDV(o) and NDV(pi) when tested with a soluble substrate, indicating that the inefficient elution of NDV(pi) was not due to a reduced enzyme content. The neuraminidase activity of intact NDV(pi) virions was significantly more stable at 55 C than the enzyme of NDV(o) virions, whereas the dissociated enzymes of the two viruses were inactivated at the same rate. On the basis of these findings, it seems likely there is a structural difference between the two viruses. The neuraminidase protein of the mutant NDV(pi) may be incorporated into the viral envelope in such a manner that it is prevented from reacting with the substrate in the erythrocyte membrane, although it can react with a soluble substrate. The hemagglutinin activity of both intact and disrupted NDV(pi) was significantly more resistant to thermal inactivation than that of the wild-type NDV(o). This finding suggests a genetic difference in the hemagglutinin protein of the two viruses.  相似文献   

4.
Zhang S  Wang X  Zhao C  Liu D  Hu Y  Zhao J  Zhang G 《PloS one》2011,6(9):e25000
Two velogenic Newcastle disease viruses (NDV) obtained from outbreaks in domestic ducks in China were characterized in this study. Phylogenetic analysis revealed that both strains clustered with the class II viruses, with one phylogenetically close to the genotype VII NDVs and the other closer to genotype IX. The deduced amino acid sequence of the cleavage site of the fusion (F) protein confirmed that both isolates contained the virulent motif (112)RRQK/RRF(117) at the cleavage site. The two NDVs had severe pathogenicity in fully susceptible chickens, resulting in 100% mortality. One of the isolates also demonstrated some pathogenicity in domestic ducks. The present study suggests that more than one genotype of NDV circulates in domestic ducks in China and viral transmission may occur among chickens and domestic ducks.  相似文献   

5.
用反向遗传技术致弱基因VIId型鹅源新城疫病毒ZJI株   总被引:1,自引:0,他引:1  
将新城疫病毒ZJI株基因组cDNA全长分成7个片段,依次连接并克隆至TVT7R转录载体中,构建了含ZJI株全基因组cDNA的转录载体(pNDV/ZJI),pNDV/ZJI与3个辅助表达质粒pCI-NP、pCI-P和pCI-L共转染BSR-T7/5细胞,成功拯救出了具有感染性的新城疫病毒粒子。设计两对引物,经overlapPCR方法将该毒株F蛋白裂解位点的112、115和117位碱性氨基酸突变成弱毒株特征的非碱性氨基酸后,替换pNDV/ZJI上的对应序列,构建了转录载体pNDV/ZJIFM,将pNDV/ZJIFM与3个辅助表达质粒共转染BSR-T7/5细胞,成功拯救出了致弱的基因VIId型鹅源新城疫病毒NDV/ZJIFM,获救病毒的鸡胚最小致死剂量平均死亡时间(MDT)大于120h,同时该病毒的脑内接种致病指数(ICPI)为0.16,上述结果表明,获救病毒的毒力已被致弱,是一个较为理想的疫苗候选株。  相似文献   

6.
Avian paramyxoviruses type 1 or Newcastle disease viruses (NDV) are frequently recovered from wild birds and such isolates are most frequently of low virulence. Velogenic NDV are usually recovered from poultry and only occasionally from wild birds. Five NDV isolates were obtained from carcasses of four wild bird species during 2007 in Serbia: Mallard (Anas platyrhynchos), Eurasian Sparrowhawk (Accipiter nisus), feral Rock Pigeon (Columba livia), and Eurasian Collared Dove (Streptopelia decaocto). All the isolates have a typical fusion protein cleavage site motif of velogenic viruses ((112)R-R-Q-K-R-F(117)). The highest homology (99%) for the nucleotide sequences spanning the M and F gene of the studied isolates was with the genotype VII NDV isolate Muscovy duck/China(Fujian)/FP1/02. Phylogenetic analysis based on a partial F gene sequence showed that the isolates from wild birds cluster together with concurrent isolates from poultry in Serbia within the subgenotype VIId, which is the predominant pathogen involved currently in Newcastle disease outbreaks in poultry worldwide. It is unlikely that the wild birds played an important role in primary introduction or consequent spread of the velogenic NDV to domestic poultry in Serbia, and they probably contracted the virus from locally infected poultry.  相似文献   

7.

Background

Newcastle disease (ND) outbreaks are global challenges to the poultry industry. Effective management requires rapid identification and virulence prediction of the circulating Newcastle disease viruses (NDV), the causative agent of ND. However, these diagnostics are hindered by the genetic diversity and rapid evolution of NDVs.

Methods

An amplicon sequencing (AmpSeq) workflow for virulence and genotype prediction of NDV samples using a third-generation, real-time DNA sequencing platform is described here. 1D MinION sequencing of barcoded NDV amplicons was performed using 33 egg-grown isolates, (15 NDV genotypes), and 15 clinical swab samples collected from field outbreaks. Assembly-based data analysis was performed in a customized, Galaxy-based AmpSeq workflow. MinION-based results were compared to previously published sequences and to sequences obtained using a previously published Illumina MiSeq workflow.

Results

For all egg-grown isolates, NDV was detected and virulence and genotype were accurately predicted. For clinical samples, NDV was detected in ten of eleven NDV samples. Six of the clinical samples contained two mixed genotypes as determined by MiSeq, of which the MinION method detected both genotypes in four samples. Additionally, testing a dilution series of one NDV isolate resulted in NDV detection in a dilution as low as 101 50% egg infectious dose per milliliter. This was accomplished in as little as 7 min of sequencing time, with a 98.37% sequence identity compared to the expected consensus obtained by MiSeq.

Conclusion

The depth of sequencing, fast sequencing capabilities, accuracy of the consensus sequences, and the low cost of multiplexing allowed for effective virulence prediction and genotype identification of NDVs currently circulating worldwide. The sensitivity of this protocol was preliminary tested using only one genotype. After more extensive evaluation of the sensitivity and specificity, this protocol will likely be applicable to the detection and characterization of NDV.
  相似文献   

8.
9.
This paper describes the complete genomic sequences of two virulent Newcastle disease virus (NDV) isolates, Shaanxi06 (prevalent genotype VIId) and Shaanxi10 (novel sub-genotype VIi), from sick crested ibises. The genomes of both isolates were 15,192 nt long and consisted of six genes in the order of 3′-NP-P-M-F-HN-L-5′. The genomes of the two isolates were highly similar to other reference NDV strains. However, some unique features were found in the HN protein of Shaanxi06 and the F gene end of Shaanxi10. Shaanxi06 and Shaanxi10 shared the same virulent motif 112 −R-R-Q-K-R-F− 117 at the F protein cleavage site, which coincided with previous pathogenicity test results. Phylogenetic analysis revealed that both isolates were clustered within class II NDV, with Shaanxi06 in genotype VII and Shaanxi10 in genotype VI. Both isolates shared high homology with the prevalent genotype NDV strains that circulate in fowls and waterfowls. This study is the first to provide genomic information about a novel sub-genotype VIi NDV strain and another genotype VIId virus, which will be useful for subsequent investigations.  相似文献   

10.
Sun E  Zhao J  Liu N  Yang T  Xu Q  Qin Y  Bu Z  Yang Y  Lunt RA  Wang L  Wu D 《PloS one》2012,7(2):e31434
West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally infects humans and horses. Certain species of birds, including crows, house sparrows, geese, blue jays and ravens, are considered highly susceptible hosts to WNV. The nonstructural protein 1 (NS1) of WNV can elicit protective immune responses, including NS1-reactive antibodies, during infection of animals. The antigenicity of NS1 suggests that NS1-reactive antibodies could provide a basis for serological diagnostic reagents. To further define serological reagents for diagnostic use, the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the potential diagnostic value of individual antigenic sites also needs to be defined. The present study describes comprehensive mapping of common immunodominant linear B-cell epitopes in the WNV NS1 using avian WNV NS1 antisera. We screened antisera from chickens, ducks and geese immunized with purified NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. This study identified twelve, nine and six peptide epitopes recognized by chicken, duck and goose antibody responses, respectively. Three epitopes (NS1-3, 14 and 24) were recognized by antibodies elicited by immunization in all three avian species tested. We also found that NS1-3 and 24 were WNV-specific epitopes, whereas the NS1-14 epitope was conserved among the Japanese encephalitis virus (JEV) serocomplex viruses based on the reactivity of avian WNV NS1 antisera against polypeptides derived from the NS1 sequences of viruses of the JEV serocomplex. Further analysis showed that the three common polypeptide epitopes were not recognized by antibodies in Avian Influenza Virus (AIV), Newcastle Disease Virus (NDV), Duck Plague Virus (DPV) and Goose Parvovirus (GPV) antisera. The knowledge and reagents generated in this study have potential applications in differential diagnostic approaches and subunit vaccines development for WNV and other viruses of the JEV serocomplex.  相似文献   

11.
4株鹅源新城疫病毒融合蛋白基因的克隆及序列分析   总被引:13,自引:1,他引:12  
测定了4株鹅源新城疫病毒(NDV)融合蛋白(F)基因5’端1700核苷酸片段的序列,并由此推导了F蛋白氨基酸序列,并对鹅源NDV的基因型分类地位进行探讨。结果表明,4株病毒F基因的同源性大于97%,与DNV标准强毒株F48E8 F基因的同源性为860%~868%,F基因转录起始序列及起始密码子位置与已知NDV完全相同;F蛋白具有和已知NDV相似的各种功能区,F蛋白前体F0裂解位点附近的氨基酸序列为112RRQKRF117,符合NDV强毒株的特征。对F基因第334~1682位核苷酸之间3种限制性内切酶HinfⅠ、BstoⅠ\,\%Rsa\%Ⅰ酶切图谱的分析表明,4株病毒的基因型与文献报道的I~Ⅷ型有明显差异。  相似文献   

12.
The H5N1 influenza virus, which killed humans and poultry in 1997, was a reassortant that possibly arose in one type of domestic poultry present in the live-poultry markets of Hong Kong. Given that all the precursors of H5N1/97 are still circulating in poultry in southern China, the reassortment event that generated H5N1 could be repeated. Because A/goose/Guangdong/1/96-like (H5N1; Go/Gd) viruses are the proposed donors of the hemagglutinin gene of the H5N1 virus, we investigated the continued circulation, host range, and transmissibility of Go/Gd-like viruses in poultry. The Go/Gd-like viruses caused weight loss and death in some mice inoculated with high virus doses. Transmission of Go/Gd-like H5N1 viruses to geese by contact with infected geese resulted in infection of all birds but limited signs of overt disease. In contrast, oral inoculation with high doses of Go/Gd-like viruses resulted in the deaths of up to 50% of infected geese. Transmission from infected geese to chickens occurred only by fecal contact, whereas transmission to quail occurred by either aerosol or fecal spread. This difference is probably explained by the higher susceptibility of quail to Go/Gd-like virus. The high degree of susceptibility of quail to Go/Gd (H5N1)-like viruses and the continued circulation of H6N1 and H9N2 viruses in quail support the hypothesis that quail were the host of origin of the H5N1/97 virus. The ease of transmission of Go/Gd (H5N1)-like viruses to land-based birds, especially quail, supports the wisdom of separating aquatic and land-based poultry in the markets in Hong Kong and the need for continued surveillance in the field and live-bird markets in which different types of poultry are in contact with one another.  相似文献   

13.
Newcastle disease virus (NDV) is an avian paramyxovirus that causes significant economic losses to the poultry industry in most parts of the world. The susceptibility of a wide variety of avian species coupled with synanthropic bird reservoirs has contributed to the vast genomic diversity of this virus as well as diagnostic failures. Since the first panzootic in 1926, Newcastle disease (ND) became enzootic in India with recurrent outbreaks in multiple avian species. The genetic characteristics of circulating strains in India, however, are largely unknown. To understand the nature of NDV genotypes in India, we characterized two representative strains isolated 13 years apart from a chicken and a pigeon by complete genome sequence analysis and pathotyping. The viruses were characterized as velogenic by pathogenicity indices devised to distinguish these strains. The genome length was 15,186 nucleotides (nt) and consisted of six non-overlapping genes, with conserved and complementary 3' leader and 5' trailer regions, conserved gene starts, gene stops, and intergenic sequences similar to those in avian paramyxovirus 1 (APMV-1) strains. Matrix gene sequence analysis grouped the pigeon isolate with APMV-1 strains. Phylogeny based on the fusion (F), and hemagglutinin (HN) genes and complete genome sequence grouped these viruses into genotype IV. Genotype IV strains are considered to have "died out" after the first panzootic (1926-1960) of ND. But, our results suggest that there is persistence of genotype IV strains in India.  相似文献   

14.
新城疫分离毒HN蛋白的抗原性初步分析及分子特性研究   总被引:1,自引:0,他引:1  
运用针对NDV囊膜糖蛋白(HN)的单克隆抗体(MAbs),对2005~2006年间自我国江苏和广西部分地区的20株NDV分离株进行排谱试验,初步分析了不同毒株之间HN蛋白的抗原表位差异;并应用RT-PCR技术成功扩增了其HN基因整个编码区,经克隆、测序最终获得13株鸡源NDV与7株鹅源NDV HN基因的编码区序列,分析测定核苷酸序列及推导的氨基酸序列,并将鹅源NDV与鸡源NDV相应序列进行了比较.结果单抗排谱试验表明,20株NDV分离株之间HN蛋白的抗原表位存在差异;测序结果表明,测定的HN基因的编码区长度皆为1716nt编码571个氨基酸;分离株中18株基因Ⅶ型NDV分离株之间HN基因编码区核苷酸序列具有较高的同源性,达94.8%~100%;与近几年国内流行的其它基因Ⅶ型NDV之间的核苷酸序列同源性为92.1%~99.6%.对其推导的HN蛋白一级结构中潜在的糖基化位点及HN蛋白细胞受体结合相关区域的氨基酸序列等进行了比较分析.结果显示,单抗排谱差异显著株在部分氨基酸位点发生了突变;同时揭示我国部分地区同期流行的鹅源NDV与鸡源NDV HN基因之间具有较近的亲缘关系.  相似文献   

15.
Newcastle disease virus (NDV) is an infectious agent of a large variety of birds, including chicken, which poses a real threat to the agriculture industry. Matrix (M) proteins of NDV and many other viruses perform critical functions during viral assembly and budding from the host cell. M-proteins are well conserved and therefore are potential targets for antiviral therapies. To validate this, we expressed the NDV M-protein in its native form in Saccharomyces cerevisiae and in inclusion bodies in Escherichia coli. Proper refolding of the recombinant protein produced in E. coli was verified using circular dichroism and infrared spectroscopies and electron microscopy. Immunization of chickens with the NDV M-protein elicited significant serum antibody titers. However, the antibodies conferred little protection against the ND following lethal viral challenges. We conclude that the M-protein is not exposed on the surface of the host cell or the virus at any stage during its life cycle. We discuss how the conserved M-protein can further be exploited as an antiviral drug target.  相似文献   

16.
Newcastle disease virus (NDV) is one of the most important viral diseases of birds. Wild birds constitute a natural reservoir of low-virulence viruses, while poultry are the main reservoir of virulent strains. Exchange of virus between these reservoirs represents a risk for both bird populations. Samples from wild and domestic birds collected between 2006 and 2010 in Luxembourg were analyzed for NDV. Three similar avirulent genotype I strains were found in ducks during consecutive years, suggesting that the virus may have survived and spread locally. However, separate introductions cannot be excluded, because no recent complete F gene sequences of genotype I from other European countries are available. Detection of vaccine-like strains in wild waterbirds suggested the spread of vaccine strains, despite the nonvaccination policy in Luxembourg. Among domestic birds, only one chicken was positive for a genotype II strain differing from the LaSota vaccine and exhibiting a so-far-unrecognized fusion protein cleavage site of predicted low virulence. Three genotype VI strains from pigeons were the only virulent strains found. The circulation of NDV in wild and free-ranging domestic birds warrants continuous surveillance because of increased concern that low-virulence wild-bird viruses could become more virulent in domestic populations.  相似文献   

17.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

18.
Eight highly virulent Newcastle disease virus (NDV) strains were isolated from vaccinated commercial chickens in Indonesia during outbreaks in 2009 and 2010. The complete genome sequences of two NDV strains and the sequences of the surface protein genes (F and HN) of six other strains were determined. Phylogenetic analysis classified them into two new subgroups of genotype VII in the class II cluster that were genetically distinct from vaccine strains. This is the first report of complete genome sequences of NDV strains isolated from chickens in Indonesia.  相似文献   

19.
Nineteen strains of Newcastle disease virus (NDV) isolated from wild ducks in Japan were placed into 4 distinct antigenic groups on the basis of their reactivities to 8 monoclonal antibodies against the HN molecule of NDV in hemagglutination inhibition tests. The NDV strains of duck origin were antigenically distinct from NDV-B1 and NDV-Miyadera originated from chickens, and varied in their virulence to chicken embryos. No apparent correlation was found between the antigenicity of the HN molecule and virulence.  相似文献   

20.
A comparison of the replication patterns in L cells and in chick embryo (CE) cell cultures was carried out with the Herts strain of Newcastle disease virus (NDV(o)) and with a mutant (NDV(pi)) isolated from persistently infected L cells. A significant amount of virus progeny, 11 plaque-forming units (PFU)/cell, was synthesized in L cells infected with NDV(o), but the infectivity remained cell-associated and disappeared without being detectable in the medium. In contrast, in L cells infected with NDV(pi), progeny virus (30 PFU/cell) was released efficiently upon maturation. It is suggested that the term "covert" rather than "abortive" be used to describe the infection of L cells with NDV(o). In both L and CE cells, the latent period of NDV(pi) was 2 to 4 hr longer than for NDV(o). The delay in synthesis of viral ribonucleic acid (RNA) in the case of NDV(pi) coincided with the delay in the inhibition of host RNA and protein synthesis. Although both NDV(o) and NDV(pi) produced more progeny and more severe cell damage in CE cells than in L cells, the shut-off of host functions was significantly less efficient in CE cells than in L cells. Paradoxically, no detectable interferon was produced in CE cells by either of the viruses, whereas in L cells most of the interferon appeared in the medium after more than 90% of host protein synthesis was inhibited. These results suggest that the absence of induction of interferon synthesis in CE cells infected with NDV is not related to the general shut-off of host cell synthetic mechanisms but rather to the failure of some more specific event to occur. In spite of the fact that NDV(pi) RNA synthesis commenced 2 to 4 hr later than that of NDV(o), interferon was first detected in the medium 8 hr after infection with both viruses. This finding suggests that there is no relation between viral RNA synthesis and the induction of interferon synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号