首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The nucleotide sequence for the psbA gene from a triazine resistant cultivar of B. napus (cv Triton) has been determined. This gene encodes an open reading frame of 353 amino acids that is highly homologous to other higher plant psbA genes at both the nucleotide and amino acid levels. As has been found for other triazine resistant psbA genes, the Triton psbA contains an A to G nucleotide change which results in a serine to glycine amino acid substitution at position 264. The B. napus psbA gene also has a G insertion at position –9 resulting in a ribosome binding site sequence (AGGA) just before the initial methionine and suggesting that the entire open reading frame is translated. A large (72 bp) insertion is also found upstream of the B. napus psbA gene which resembles a similar insertion in the mustard psbA. The uncloneable nature of the entire gene is further investigated through reconstruction experiments and the implications discussed.  相似文献   

2.
Chloroplast ribosome-binding sites were identified on the plastidrbcL andpsbA mRNAs using toeprint analysis. TherbcL translation initiation domain is highly conserved and contains a prokaryotic Shine-Dalgarno (SD) sequence (GGAGG) located 4 to 12 nucleotides upstream of the initiator AUG. Toeprint analysis ofrbcL mRNA associated with plastid polysomes revealed strong toeprint signals 15 nucleotides downstream from the AUG indicating ribosome binding at the translation initiation site.Escherichia coli 30S ribosomes generated similar toeprint signals when mixed withrbcL mRNA in the presence of initiator tRNA. These results indicate that plastid SD sequences are functional in chloroplast translation initiation. ThepsbA initiator region lacks a SD sequence within 12 nucleotides of the initiator AUG. However, toeprint analysis of soluble and membrane polysome-associatedpsbA mRNA revealed ribosomes bound to the initiator region.E. coli 30S ribosomes did not associate with thepsbA translation initiation region.E. coli and chloroplast ribosomes bind to an upstream region which contains a conserved SD-like sequence. Therefore, translation initiation onpsbA mRNA may involve the transient binding of chloroplast ribosomes to this upstream SD-like sequence followed by scanning to localize the initiator AUG. Illumination 8-day-old dark-grown barley seedlings caused an increase in polysome-associatedpsbA mRNA and the abundance of initiation complexes bound topsbA mRNA. These results demonstrate that light modulates D1 translation initiation in plastids of older dark-grown barley seedlings.  相似文献   

3.
In this paper, we describe a protocol to obtain a site-directed mutants in thepsbA gene ofChlamydomonas reinhardtii, which overcomes several drawbacks of previous protocols, and makes it possible to generate a mutant within a month. Since the large size of the gene, and the presence of four large introns has made molecular genetics of thepsbA gene rather unwieldy, we have spliced all of the exons of thepsbA gene by PCR to facilitate genetic manipulation and sequencing of the gene. The resultant construct (plasmid pBA153, with several unique restriction sites introduced at exon boundaries) carried 1.2 and 1.8 kb intact sequences from the 5- and 3-flanking regions, respectively. The plasmid was used to transform a D1-deletion mutant and was found to complement the deletion and restore photosynthetic activity. In addition, a bacterialaadA gene conferring spectinomycin resistance (spe r) was inserted downstream of the intron-freepsbA gene, to give construct pBA155. This allowed selection of mutant strains deficient in photosynthesis by using spectinomycin resistance, and eliminated the possibility of selection for revertant strains which is a consequence of having to use photosynthetic activity as a selection pressure. Finally, pBA155 was used to construct pBA157, in which additional restriction sites were inserted to facilitate cassette mutagenesis for generation of mutations in spans thought to be involved in donor-side interactions. AllpsbA deletion strains transformed with intron-freepsbA-aadA constructs encoding the wild-type D1 sequence, and screened on spectinomycin plates for thespe r phenotype, were able to grow photosynthetically, and all showed identical kinetics for electron transfer from primary (QA) to secondary quinone (QB) in Photosystem II, as assayed by the decay of the high fluorescence yield on oxidation of the reduced primary acceptor (QA ).  相似文献   

4.
The weed Senecio vulgaris acquired high levels of resistance to triazine herbicides soon after the latter’s introduction. As in most weeds, triazine resistance is conferred by a point mutation in the chloroplast psbA gene that negatively affects the fitness of its carrier. To assess levels of triazine resistance in S. vulgaris field populations, we adopted a PCR-RFLP-based molecular diagnostic test recently developed for the triazine resistance-conferring region of the psbA gene of other weeds, including Brassica napus, Chenopodium spp. and Amaranthus spp., and compared these molecular results to the phenotypic response after triazine application. A highly significant linear correlation was found between phytotoxic symptoms and biomass reduction. Variability in phenotypic response was not only found between populations or inbred lines of S. vulgaris but also within replicates of the same inbred line. No clear relationship, however, was found between the DNA restriction pattern and the phenotypic response to triazine application, thereby throwing doubt on the use of such molecular diagnostic tests to track triazine resistance in S. vulgaris. Our results indicate that the chloroplast genome of S. vulgaris is polymorphic and that the level of polymorphism may be variable within single leaves of individual plants. We discuss the possible genetic basis of this polymorphism and its consequence for the acquisition and inheritance of chloroplast-based traits. Received: 28 December 1998 / Accepted: 20 February 1999  相似文献   

5.
A foxtail millet (Setaria italica L. Beauv.) line resistant to atrazine was obtained through interspecific hybridization between wild S. viridis L. Beauv. and cultivated S. italica. The resistance was proved to be controlled by a chloroplast-inherited gene and it has further been utilized in foxtail millet production. However, the sequence information of the putative atrazine resistance gene, psbA in foxtail millet’s chloroplast genome encoding photosystem II D1 protein (32 kDa thylakoid membrane protein) (photosystem QB protein) and the mutation site responsible for the resistance are not known. In this paper the psbA sequences of six atrazine susceptible/resistant foxtail millet varieties were obtained and compared. The results indicated that there was only one amino acid difference between susceptible and resistance gene, resulting from a single base substitution. It was concluded that a mutant allele of photosystem II protein D1 encoding a Gly residue instead of a Ser residue at position 264 is a major gene of resistance to atrazine. Moreover, the phylogenetic tree based on the psbA coding region of thirty-five plant species was carried out. The phylogenetic relationship between S. italica and other plants and the related evolutionary issues were discussed and it was suggested that psbA sequences could be used in phylogenetic studies in plants. Xiaoping Jia and Jincheng Yuan have equal contribution.  相似文献   

6.
Efficient chloroplast transformation systems now available allow the manipulation of the evolutionarily highly conserved psbA gene in the eucaryotic organism Chlamydomonas reinhardtii. Two copies of this gene in the inverted repeat region of the chloroplast genome contain four large group I introns. To analyse possible functions of these introns and to generate a mutant for simplified psbA gene manipulations, a psbA cDNA fragment was introduced into a psbA deletion mutant using the biolistic transformation method. A transformant with no introns in the psbA gene has been obtained and represents the first example of the removal of a complete set of introns from a chloroplast gene. The newly generated strain is photosynthetically competent and contains no detectable recipient genome copies. The loss of all four introns appears to be phenotypically silent.  相似文献   

7.
赵恒  刘玉珊  陈彤  刘丽 《微生物学报》2023,63(2):760-774
【目的】噬藻体(cyanophage)广泛存在于自然水体生态系统中,通过侵染蓝藻进而调控蓝藻种群及群落结构,具有重要生态功能和生态地位,在控制蓝藻水华方面有巨大开发潜力。本研究旨在探究云南高原湖泊噬藻体psbA基因多样性,分析其系统进化地位,为深入了解高原湖泊生态功能、开发利用噬藻体资源奠定理论基础。【方法】以云南高原主要湖泊滇池、抚仙湖和星云湖等为研究对象,以psbA基因作为分子靶标,对湖泊水体中噬藻体遗传多样性进行研究。【结果】从不同湖泊中共获得100条环境噬藻体psbA基因序列,系统发育分析表明,湖泊的噬藻体psbA基因序列与中国东湖、中国东北稻田、日本稻田等淡水中的环境噬藻体psbA基因亲缘关系较近,与海洋环境噬藻体psbA基因亲缘关系较远;抚仙湖中的噬藻体psbA基因多样性高于滇池、星云湖和异龙湖中的噬藻体psbA基因多样性;云南高原湖泊中存在新的噬藻体类群;各湖泊秋冬季节噬藻体psbA基因遗传多样性差异不明显。【结论】云南主要高原湖泊噬藻体psbA基因遗传多样性高,与淡水环境噬藻体psbA基因亲缘关系较近,且存在独特的噬藻体类群。  相似文献   

8.
Isoproturon, 3-p-cumenyl-1 dimethylurea was the only herbicide controlling Phalaris minor, a major weed growing in wheat fields till the early 1980s. Since it has acquired resistance against isoproturon, like other substituted urea herbicides, where the identified target site for isoproturon is in the photosynthetic apparatus at D1 protein of Photosystem-II (PS-II). Nucleotide sequence of susceptible and resistant psbA gene of P. minor has been reported to have four point mutations. During the present work D1 protein of both susceptible and resistant biotypes of P Minor has been modeled. Transmembrane segments of amino acids were predicted by comparing with the nearest homolog of bacterial D1 protein. Volume and area of active site of both susceptible and resistant biotypes has been simulated. Isoproturon was docked at the active site of both, susceptible and resistant D1 proteins. Modeling and simulation of resistance D1 protein indicates that the resistance is due to alteration in secondary structure near the binding site, resulting in loss in cavity area, volume and change in binding position, loss of hydrogen bonds, hydrophobic interaction and complete loss of hydrophobic sites. To regain sensitivity in resistant biotype new derivatives of isoproturon molecules have been proposed, synthesized and tested. Among the 17 derivatives we found that the N-methyl triazole substituted isoproturon is a potential substitute for isoproturon.  相似文献   

9.
A germinating-seed assay was developed to determine the susceptibility of dry bean (Phaseolus vulgaris L.) to infection by Agrobacterium tumefaciens. Seedlings infected one to three days after germination were more susceptible to A. tumefaciens infection than seedlings germinated for five to seven days and the galls that formed on the one to three day seedlings were significantly larger. Nineteen genotypes of dry bean were screened with this assay and all were equally susceptible to nopaline, octopine and agropine biotypes of A. tumefaciens. In addition, cotyledonary nodes and hypocotyls of P. vulgaris were inoculated with disarmed strain A. tumefaciens strain C58Z707 and the avirulent A. rhizogenes strain A4RS (pRiB278b), respectively. Both strains contain the binary plasmid pGA482 which has the neomycin phosphotransferase II (NPT II) gene nested between T-DNA borders. From these infected tissues, callus and root tissues, respectively capable of growing in the presence of kanamycin were obtained. These tissues displayed NPT II activity and integrated copies of the NPT II gene were detected from putative transformed root cultures by genomic blot hybridization.  相似文献   

10.
A population ofLolium rigidum Gaud. displays resistance to the herbicide chlorotoluron endowed by enhanced metabolism of this herbicide. The level of resistance in intact plants of this population is light dependent. Resistance is about 4-fold at 110 mol photons·m–2·s–1, but increases to 11-fold at 600 mol photons·m–2·s–1. For seedlings grown in the dark, the rate of chlorotoluron metabolism is identical between biotypes; however, seedlings of the resistant biotype grown in the light display enhanced chlorotoluron metabolism compared to the susceptible biotype. Specifically, light with blue wavelengths induces chlorotoluron metabolism in the resistant biotype. An analysis of the metabolites produced indicates that two routes of chlorotoluron metabolism occur inL. rigidum. These are characterised by initial reactions leading to ringmethyl hydroxylation orN-demethylation of the herbicide. The ring-methyl hydroxylation pathway is increased greatly in light-grown resistant seedlings compared to susceptible seedlings, whereas theN-demethylation pathway is only slightly increased. The differential induction of these two pathways in resistantL. rigidum by light suggests that enhanced activity of two different enzymes may be involved in chlorotoluron resistance.Abbreviations ABT 1-aminobenzotriazole - LD50 dose giving 50% mortality - LSS liquid scintillation spectroscopy  相似文献   

11.
A detailed comparison of the polar-lipid composition of chloroplast thylakoid membranes isolated from triazine-susceptible and triazine-resistant biotypes of Chenopodium album, Senecio vulgaris, Poa annua and Amaranthus retroflexus has been carried out. No major differences in the composition of the bulk lipid matrix were found except for a slightly higher monogalactosyldiacylglycerol to digalactosyldiacylglycerol ratio in resistant compared with susceptible biotypes. There was, however, in the case of resistant plants a higher level of phosphatidylglycerol-containing transhexadecenoic acid in membrane fractions enriched in photosystem two. It is concluded that although the minor differences could contribute to triazine resistance it is more likely that they reflect secondary alterations in membrane organisation associated with changes in relative levels of pigment-protein complexes.Abbreviations DGDG digalactosyldiacylglycerol - MGDG monogalactosyldiacylglycerol - PG phosphatidylglycerol - PSII photosystem two  相似文献   

12.
Cell-autonomous genes have been used to monitor the excision of both endogenous transposons in maize andAntirrhinum, and transposons introduced into transgenic plants. In tobacco andArabidopsis, the streptomycin phosphotransferase (SPT) gene reveals somatic excision of the maize transposonActivator (Ac) as green sectors on a white background in cotyledons of seedlings germinated in the presence of streptomycin. Cotyledons of tomato seedlings germinated on streptomycin-containing medium do not bleach, suggesting that a different assay for transposon excision in tomato is desirable. We have tested the use of the spectinomycin resistance (SPEC) gene (aadA) and a Basta resistance (BAR) gene (phosphinothricin acetyltransferase, or PAT) for monitoring somatic excision ofAc in tobacco and tomato. Both genetic and molecular studies demonstrate that genotypically variegated individuals that carry clones of cells from whichAc orDs have excised from either SPEC or BAR genes, can be phenotypically completely resistant to the corresponding antibiotic. This demonstrates that these genes act non-cell-autonomously, in contrast to the SPT gene in tobacco. Possible reasons for this difference are discussed.  相似文献   

13.
A new mutant of the psbA gene conferring resistance to 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) was obtained by selection of photomixotrophic tobacco (Nicotiana tabacum cv Samsun NN) cells. The 264th codon AGT (serine) in the wild psbA gene was changed to ACT (threonine) in these mutant tobacco cells. All other higher plants resistant to atrazine exhibit a change to GGT (glycine) in this codon. Measurements of Hill reaction activity and chlorophyll fluorescence showed that the threonine 264-containing plastoquinone serving as secondary stable electron acceptor of PSII (QB protein) had not only strong resistance to triazine-type herbicides but also moderate resistance to substituted urea-type herbicides. Threonine-type QB protein showed especially strong resistance to methoxylamino derivatives of the substituted urea herbicides. The projected secondary structures of the mutant QB proteins indicate that the cross-resistance of threonine 264 QB protein to triazine and urea herbicides is mainly due to a conformational change of the binding site for the herbicides. However, the glycine 264 QB protein is resistant to only triazine herbicides because of the absence of an hydroxyl group and not because of a conformational change.  相似文献   

14.
Expression of the chloroplast psbA gene coding for the D1 protein of Photosystem II is subject to regulation at different levels in higher plants, including control of mRNA accumulation and translation. In dicots, the conserved 5 non-translated leader (5-UTR) of the psbA mRNA is sufficient to direct the light-dependent translation of the D1 protein. In this report we show that the psbA mRNA 5-UTR forms a stem-loop structure and binds a 43 kD chloroplast protein (43RNP). Binding of the 43RNP is sensitive to competition with poly(U), but insensitive to high concentrations of tRNA, the RNA homopolymers poly(A), poly(G), poly(C), or poly(A):poly(U) as a double-strand RNA. The 43RNP does not bind efficiently to the psbA mRNA 3 non-translated region, although the RNA sequence is U-rich and folds into a stem-loop. A deletion mutant of the psbA 5-UTR RNA in which 5 sequences of the stem-loop are removed does not affect 43RNP binding. Together, these properties suggest that the 43RNP binds most effectively to a specific single-strand U-rich sequence preceding the AUG start codon in the psbA mRNA. Binding of the 43RNP is not detectable in plastid protein extracts from 5-day-old dark-grown seedlings, but is detectable in light-grown seedlings as well as mature plants in the light and after shifted to the dark. The 43RNP is therefore a candidate for a regulatory RNA-binding protein that may control the accumulation and/or translation of the psbA mRNA during light-dependent seedling development.Abbreviations DMS dimethylsulfate - psb Photosystem II genes - RNP ribonucleoprotein - UTR non-translated leader - UV crosslinking ultra-violet light crosslinking  相似文献   

15.
We have examined the expression of a maize nucleartuf gene(tufA) coding for the chloroplast translation elongation factor EF-Tu. Southern analysis revealed that the maize chloroplast EF-Tu was encoded by at least two distinct genes in the nuclear genome. In order to know the effect of light on the expression of thetufA gene during maize chloroplast biogenesis, we have analyzed the steady-state level of thetufA mRNAs by Northern analysis. The steady-state level of thetufA mRNAs was similar in both continuous light- and dark-grown seedlings. The level of thetufA mRNAs also maintained at relatively same level during light-induced greening of etiolated seedlings and all examined developmental stages. These results indicate that the gene expression of the maize chloroplast EF-Tu is rarely light-regulated at it’s mRNA level during chloroplast biogenesis.  相似文献   

16.
Swamp dodder (Cuscuta gronovii) is a parasitic plant detrimental to cranberries. Observation of emergence of dodder seeds collected from a cultivated cranberry bog in Massachusetts revealed 2 or more peak emergence times during 4 consecutive growing seasons. Molecular methods were used to investigate genetic variation among the emerging dodder seedlings. On emergence, dodder seedlings were collected and analyzed for DNA sequence diversity in thetrnL (UAA) intron, a noncoding region of chloroplast DNA. DNA sequence analysis of 87 seedlings collected during the 1999 and 2000 growing seasons revealed the presence of 2 dodder ecotypes, designated A and B. Comparative DNA sequence analysis indicated that in thetrnL (UAA) intron, the sequence of ecotype A is identical to that ofCuscuta gronovii, whereas the sequence of ecotype B is closest to that ofCuscuta attenuata (99.3% sequence identity; 293 bases considered). ABg/II restriction enzyme cut site was identified that distinguished between thetrnL (UAA) introns of ecotypes A and B. Restriction fragment length polymorphism (RFLP) was used to analyze the sequences of 100 seedlings collected during the growing seasons of 2001 and 2002. Only 10 of the 187 samples were ecotype A, all of which emerged on or before May 7 in the growing seasons. Therefore, the predominant dodder haplotype found in this study may be a close relative ofC. attenuata and notC. gronovii, the common species found in cranberry bogs.  相似文献   

17.
Stable transformation ofArabidopsis thaliana is a lengthy process that involves up to 3 mo of plant growth and seed selection. We have developed a rapid, 3-wk transient assay system to test the functionality ofcis-regulatory regions controlling expression of a reporter gene in plants before undertaking stable transformation. Two-week-oldArabidopsis seedlings were vacuum-infiltrated withAgrobacterium tumefaciens cultures carrying various upstream regulatory regions controllinguidA (β-glucuronidase [GUS]) expression. Seedlings were fixed and stained for GUS activity 3–5 d following infiltration. Regulatory regions tested in this system include the cauliflower mosaic virus (CaMV)35S promoter, the upstream regulatory region of ribosomal protein geneL23A-1, and a temperature-inducible regulatory region (HSP101B) also fromArabidopsis. The percentage of seedlings positive for GUS activity varied depending on the construct used, with the CaMV35S promoter producing the highest number of GUS-positive seedlings. Temperature induction treatments elicited increased GUS expression in seedlings transformed with theHSP101B regulatory region. Regardless of construct, GUS expression levels were higher in seedlings collected 5 d followingAgrobacterium infiltration than those collected 3–4 d postinfiltration.  相似文献   

18.
Zhang XQ  Powles SB 《Planta》2006,223(3):550-557
Acetyl-CoA carboxylase (ACCase) (EC.6.4.1.2) is an essential enzyme in fatty acid biosynthesis and, in world agriculture, commercial herbicides target this enzyme in plant species. In nearly all grass species the plastidic ACCase is strongly inhibited by commercial ACCase inhibiting herbicides [aryloxyphenoxypropionate (APP) and cyclohexanedione (CHD) herbicide chemicals]. Many ACCase herbicide resistant biotypes (populations) of L. rigidum have evolved, especially in Australia. In many cases, resistance to ACCase inhibiting herbicides is due to a resistant ACCase enzyme. Two ACCase herbicide resistant L. rigidum biotypes were studied to identify the molecular basis of ACCase inhibiting herbicide resistance. The carboxyl-transferase (CT) domain of the plastidic ACCase gene was amplified by PCR and sequenced. Amino acid substitutions in the CT domain were identified by comparison of sequences from resistant and susceptible plants. The amino acid residues Gln-102 (CAG codon) and Ile-127 (ATA codon) were substituted with a Glu residue (GAG codon) and Leu residue (TTA codon), respectively, in both resistant biotypes. Amino acid positions 102 and 127 within the fragment sequenced from L. rigidum corresponded to amino acid residues 1756 and 1781, respectively, in the A. myosuroides full ACCase sequence. Allele-specific PCR results further confirmed the mutations linked with resistance in these populations. The Ile-to-Leu substitution at position 1781 has been identified in other resistant grass species as endowing resistance to APP and CHD herbicides. The Gln-to-Glu substitution at position 1756 has not previously been reported and its role in herbicide resistance remains to be established.  相似文献   

19.
CyanobacteriumSynechocystis PCC6803 was used as a model system for a prolonged delivery of insecticidal crystal proteins ofBacillus thuringiensis subsp.israelensis in the water surface. Thebt8 gene, encoding a 128 kDa (Bt8) mosquitocidal protein, and the28kd gene, encoding a 28 kDa cytotoxic protein, were integrated into the cyanobacterial chromosome. The genes were expressed under the control of thepsbA promoter, derived from the tobacco chloroplast genome. The Bt8 protein produced by the cyanobacterium was toxic to mosquito larvae. The28kd gene expression in the cyanobacterium was very low, partly owing to the low level of steady state mRNA. With the same system, it was demonstrated that the herbicide-resistance genebar could be used as a new selectable marker in cyanobacterial transformation experiments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号