首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The availability of whole genome shotgun sequences (WGSs) in Brassica oleracea provides an unprecedented opportunity for development of microsatellite or simple sequence repeat (SSR) markers for genome analysis and genetic improvement in Brassica species. In this study, a total of 56,465 non-redundant SSRs were identified from the WGSs in B. oleracea, with dinucleotide repeats being the most abundant, followed by tri-, tetra- and pentanucleotide repeats. From these, 1,398 new SSR markers (designated as BoGMS) with repeat length ≥25 bp were developed and used to survey polymorphisms with a panel of six rapeseed varieties, which is the largest number of SSR markers developed for the C genome in a single study. Of these SSR markers, 752 (69.5%) showed polymorphism among the six varieties. Of these, 266 markers that showed clear scorable polymorphisms between B. napus varieties No. 2127 and ZY821 were integrated into an existing B. napus genetic linkage map. These new markers are preferentially distributed on the linkage groups in the C genome, and significantly increased the number of SSR markers in the C genome. These SSR markers will be very useful for gene mapping and marker-assisted selection of important agronomic traits in Brassica species.  相似文献   

2.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 24 expressed sequence tags (EST)‐SSR markers from Brassica napus and their cross‐amplification across Brassica species. The markers show reliable amplification, genome specificity and considerable polymorphism, demonstrating the utility of EST‐SSRs for genetic analysis of wild Brassica populations and commercial Brassica germplasm.  相似文献   

3.
Brassica napus (AACC) is a recent allotetraploid species evolved through hybridization between two diploids, B. rapa (AA) and B. oleracea (CC). Due to extensive genome duplication and homoeology within and between the A and C genomes of B. napus, most SSR markers display multiple fragments or loci, which limit their application in genetics and breeding studies of this economically important crop. In this study, we collected 3,890 SSR markers from previous studies and also developed 5,968 SSR markers from genomic sequences of B. rapa, B. oleracea and B. napus. Of these, 2,701 markers that produced single amplicons were putative single-locus markers in the B. napus genome. Finally, a set of 230 high-quality single-locus SSR markers were established and assigned to the 19 linkage groups of B. napus using a segregating population with 154 DH individuals. A subset of 78 selected single-locus SSR markers was proved to be highly stable and could successfully discriminate each of the 45 inbred lines and hybrids. In addition, most of the 230 SSR markers showed the single-locus nature in at least one of the Brassica species of the U’s triangle besides B. napus. These results indicated that this set of single-locus SSR markers has a wide range of coverage with excellent stability and would be useful for gene tagging, sequence scaffold assignment, comparative mapping, diversity analysis, variety identification and association mapping in Brassica species.  相似文献   

4.
The present study was carried out with the objective of evaluating genomic STMS markers developed earlier in Brassica napus, B. oleracea, B. rapa and B. nigra for their use in Brassica juncea and B. carinata. Ninety-six of the 100 STMS markers used under standardized annealing temperatures and gel concentrations produced clear reproducible amplification pattern. For majority of the markers 60 °C annealing temperature and 3.5% metaphor agarose gel were found suitable. High cross-transferability of STMS markers to related Brassica species including B. carinata (91.6%) and B. juncea (87.5%) suggested the possibility of utilizing these markers for genome analysis in the species where no such markers are available. The ‘B’ genome derived markers showed lower level of transferability to the ‘A’ and ‘C’ genome Brassica species. The potential of STMS markers to detect polymorphism among Brassica species and genera was 98.9%. The level of inter-specific polymorphism was much higher than the intea-specific polymorphism. The markers capable of revealing polymorphism among Brassica species and genera would be useful in Brassica introgression breeding programme. The polymorphic markers were found efficient in establishing the expected evolutionary relationships among the six different Brassica species and two related genera. Low level of intra-specific polymorphism revealed by these markers suggested use of a large set of such markers for various applications in Brassica genetics, genomics and breeding.  相似文献   

5.
A set of 398 simple sequence repeat markers (SSRs) have been developed and characterised for use with genetic studies of Brassica species. Small-insert (250–900 bp) genomic libraries from Brassica rapa, B. nigra, B. oleracea and B. napus, highly enriched for dinucleotide and trinucleotide SSR motifs, were constructed. Screening the clones with a mixture of oligonucleotide repeat probes revealed positive hybridisation to between 75% and 90% of the clones. Of these, 1,230 were sequenced. Primer pairs were designed for 398 SSR clones, and of these, 270 (67.8%) amplified a PCR product of the expected size in their focal and/or closely related species. A further screen of 138 primers pairs that produced a PCR product in B. napus germplasm found that 86 (62.3%) revealed length polymorphisms within at least one line of a test array representing the four Brassica species. The results of this screen were used to identify 56 SSRs and were combined with 41 SSRs that had previously shown polymorphism between the parents of a B. napus mapping population. These 97 SSR markers were mapped relative to a framework of RFLP markers and detected 136 loci over all 19 linkage groups of the oilseed rape genome.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by O. Savolainen  相似文献   

6.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 16 expressed sequence tags (EST)‐SSR markers from Brassica juncea and their cross‐amplification across Brassica species. Sixteen primer pairs were assessed for polymorphism in all genomes of the diploid and amphidiploid Brassica species. The markers show reliable amplification, considerable polymorphism and high transferability across species, demonstrating the utility of EST‐SSRs for genetic analysis of brassicas.  相似文献   

7.
Homoeologous regions of Brassica genomes were analyzed at the sequence level. These represent segments of the Brassica A genome as found in Brassica rapa and Brassica napus and the corresponding segments of the Brassica C genome as found in Brassica oleracea and B. napus. Analysis of synonymous base substitution rates within modeled genes revealed a relatively broad range of times (0.12 to 1.37 million years ago) since the divergence of orthologous genome segments as represented in B. napus and the diploid species. Similar, and consistent, ranges were also identified for single nucleotide polymorphism and insertion-deletion variation. Genes conserved across the Brassica genomes and the homoeologous segments of the genome of Arabidopsis thaliana showed almost perfect collinearity. Numerous examples of apparent transduplication of gene fragments, as previously reported in B. oleracea, were observed in B. rapa and B. napus, indicating that this phenomenon is widespread in Brassica species. In the majority of the regions studied, the C genome segments were expanded in size relative to their A genome counterparts. The considerable variation that we observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.  相似文献   

8.
The availability of sequence data derived from shotgun sequencing programs enables mining for simple sequence repeats (SSRs), providing useful genetic markers for crop improvement. This study presents the development and characterization of 40 SSR markers from Brassica oleracea shotgun sequence and their cross‐amplification across Brassica species. The markers show reliable amplification, genome specificity and considerable polymorphism, demonstrating the utility of SSRs for genetic analysis of commercial Brassica germplasm.  相似文献   

9.
A collaborative Brassica rapa genome sequencing project is currently in progress to aid the identification of agronomically important traits in Brassica species. As an initial stage, the ends of over 110 000 bacterial artificial chromosome clones were sequenced and mined for simple sequence repeats (SSRs). We present the characterization of 40 of these SSRs and their application in Brassica napus. The markers were screened against six Brassica species and Arabidopsis, and demonstrated reliable amplification, genome specificity, cross‐amplification and significant polymorphism. These SSRs will be useful for genetic analysis of Brassica germplasm.  相似文献   

10.
Ceratocystis fimbriata sensu lato represents a complex of cryptic and commonly plant pathogenic species that are morphologically similar. Species in this complex have been described using morphological characteristics, intersterility tests and phylogenetics. Microsatellite markers have been useful to study the population structure and origin of some species in the complex. In this study we sequenced the genome of C. fimbriata. This provided an opportunity to mine the genome for microsatellites, to develop new microsatellite markers, and map previously developed markers onto the genome. Over 6000 microsatellites were identified in the genome and their abundance and distribution was determined. Ceratocystis fimbriata has a medium level of microsatellite density and slightly smaller genome when compared with other fungi for which similar microsatellite analyses have been performed. This is the first report of a microsatellite analysis conducted on a genome sequence of a fungal species in the order Microascales. Forty-seven microsatellite markers have been published for population genetic studies, of which 35 could be mapped onto the C. fimbriata genome sequence. We developed an additional ten microsatellite markers within putative genes to differentiate between species in the C. fimbriata s.l. complex. These markers were used to distinguish between 12 species in the complex.  相似文献   

11.
The traditional development of simple sequence repeat (SSR) or microsatellite markers by probe hybridization can be time-consuming and requires the use of specialized laboratory equipment. In this study, probe hybridization was circumvented by using sequence information on 3,500 genomic clones mainly from Brassica oleracea to identify di, tri, tetra and penta-nucleotide repeats. A total of 587 primer pairs flanking SSR were developed using this approach. From these, 420 SSR markers amplified DNA in two parental lines of B. rapa (26% were polymorphic) and 523 in two parental lines of B. oleracea (32% were polymorphic). A diverse array of motif types was identified, characterized and compared with traditional SSR detection methods. The most abundant motifs found were di- (38%) and trinucleotides (33%) followed by penta- (16%) and tetranucleotide (13%) motifs. The type of motif class, motif length and repeat were not indicative of polymorphisms. The frequency of B. oleracea SSRs in genomic shotgun sequence was estimated to be 1 every 4 Kb. In general, the average motif length and repeat numbers were shorter than those obtained previously by probe hybridization, and they contained a more balanced representation of SSR motif types in the genome by identifying those that do not hybridize well to DNA probes. Brassica genomic DNA sequence information is a promising resource for developing a large number of SSR molecular markers in Brassica species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Black rot caused by Xanthomonas campestris pv. campestris (Pam.) Dowson is the most destructive disease of cauliflower causing huge loss to the farmers throughout the world. Since there are limited sources of resistance to black rot in B. oleracea (C genome Brassica), exploration of A and B genomes of Brassica was planned as these were thought to be potential reservoirs of black rot resistance gene(s). In our search for new gene(s) for black rot resistance, F2 mapping population was developed in Brassica carinata (BBCC) by crossing NPC-17, a susceptible genotype with NPC-9, a resistant genotype. Out of 364 Intron length polymorphic markers and microsatellite primers used in this study, 41 distinguished the parental lines. However, resistant and susceptible bulks could be distinguished by three markers At1g70610, SSR Na14-G02 and At1g71865 which were used for genotyping of F2 mapping population. These markers were placed along the resistance gene, according to order, covering a distance of 36.30 cM. Intron length polymorphic markers At1g70610 and At1g71865 were found to be linked to black rot resistance locus (Xca1bc) at 6.2 and 12.8 cM distance, respectively. This is the first report of identification of markers linked to Xca1bc locus in Brassica carinata on B-7 linkage group. Intron length polymorphic markers provided a novel and attractive option for marker assisted selection due to high cross transferability and cost effectiveness for marker assisted alien gene introgression into cauliflower.  相似文献   

13.
Microsatellites are robust markers for genome mapping, gene tagging and marker assisted selection. The genus Brassica, having a large and complex genome, requires such type of markers for various applications in genetics and breeding. A set of 202 microsatellite markers were used to screen two parental genotypes of Indian mustard (Brassica juncea) namely, ‘Varuna’, an indigenous cultivar and BEC144, an exotic collection from Poland, of which 36 (17.8%) were informative and usable for segregation analysis. The polymorphic markers detected heterozygosity in advanced generation recombinant inbred lines (RILs) developed earlier from the cross Varuna × BEC144 with a varying frequency that ranged from 0% to 23.5%. Normal Mendelian segregation for majority of microsatellite markers was observed. Eleven markers showed significant deviation from the expected 1:1 segregation ratio. Twelve markers were assigned to six different linkage groups of Indian mustard genome map. The level of polymorphism between the parents and the percentage of useful informative markers as observed in this study, suggested that many more markers are needed to achieve a reasonable coverage of mustard genome. This is the first report on the evaluation of microsatellite markers for genome mapping in B. juncea.  相似文献   

14.
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules.  相似文献   

15.
No information is available on the transferability and amplification quality of microsatellite (SSR) markers of the public domain inBrassica carinata A. Braun. The objective of the presented research was to study the amplification of a set of 73 SSRs fromB. nigra (L.) Koch andB. napus L. inB. carinata, and to compare the results with those obtained in the amplification of the same markers in otherBrassica species of the U triangle. This set of SSRs fromB. nigra (B genome) andB. napus (AC genome) allows the identification of the 3 basic genomes of theBrassica species tested. 94.3% of the SSR markers fromB. nigra and 97.4% of those fromB. napus amplified SSR-specific products inB. carinata. Very high-quality amplification with a strong signal and easy scoring inB. carinata was recorded for 52.8% of the specific loci fromB. nigra SSRs and 59.3% of the specific loci fromB. napus SSRs, compared to 66.7% inB. nigra and 62.8% inB. napus. Genome specificity and amplification quality ofB. nigra andB. napus SSR markers in the 6 species under study is reported. High-quality transferable SSR markers provide an efficient and cost-effective platform to advance in molecular research inB. carinata.  相似文献   

16.
Microsatellite markers have assumed great significance in biological research. The isolation and characterisation of microsatellites involves DNA library construction and screening, DNA sequencing, primer design and PCR optimisation. When a microsatellite is situated close to the beginning or end of a cloned fragment, specific primers cannot be designed for one of the flanking sequences, thus hindering the utilisation of such microsatellites as markers. The present approach was to use one 5′-anchored primer complementary to the microsatellite sequence in combination with one specific Cy5- labelled primer with a view to retrieving useful microsatellites, which would otherwise be lost. Six pairs of a 5′ anchored primer and a specific primer were used across a set of 31 Brassica napus winter cultivars and one accession each of five additional Brassica species. Using laser fluorometry a single labelled product was observed after amplification with each of four primer pairs, and one primer pair gave two labelled products. Three products corresponded in size with the products expected if 5′ anchoring was effective, indicating the amplification of locus-specific full-length products including all of the microsatellite repeats. All six primer pairs showed polymorphisms across the Brassica species examined, but only one primer pair showed polymorphisms within B. napus, making it useful for genetic analysis in rapeseed cultivars. The other primer pairs could be useful in studying gene introgression into B. napus or for investigating interspecific crosses involving different Brassica species. Received: 5 August 1999 / Accepted: 1 November 1999  相似文献   

17.
Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops.  相似文献   

18.
Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice) and dicots (Arabidopsis, Medicago and Populus) was performed. A total of 797,863 simple sequence repeats (SSRs) were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database 'BraMi' (Brachypodium microsatellite markers) of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot-dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium and related grass species, especially for the map based cloning of the candidate gene(s).  相似文献   

19.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

20.

Background

Microsatellites or simple sequence repeats (SSRs) are highly informative molecular markers for various biological studies in plants. In spruce (Picea) and other conifers, the development of single-copy polymorphic genomic microsatellite markers is quite difficult, owing primarily to the large genome size and predominance of repetitive DNA sequences throughout the genome. We have developed highly informative single-locus genomic microsatellite markers in black spruce (Picea mariana) and red spruce (Picea rubens) using a simple but efficient method based on a combination of AFLP and microsatellite technologies.

Principal Findings

A microsatellite-enriched library was constructed from genomic AFLP DNA fragments of black spruce. Sequencing of the 108 putative SSR-containing clones provided 94 unique sequences with microsatellites. Twenty-two of the designed 34 primer pairs yielded scorable amplicons, with single-locus patterns. Fourteen of these microsatellite markers were characterized in 30 black spruce and 30 red spruce individuals drawn from many populations. The number of alleles at a polymorphic locus ranged from 2 to 18, with a mean of 9.3 in black spruce, and from 3 to 15, with a mean of 6.2 alleles in red spruce. The polymorphic information content or expected heterozygosity ranged from 0.340 to 0.909 (mean = 0.67) in black spruce and from 0.161 to 0.851 (mean = 0.62) in red spruce. Ten SSR markers showing inter-parental polymorphism inherited in a single-locus Mendelian mode, with two cases of distorted segregation. Primer pairs for almost all polymorphic SSR loci resolved microsatellites of comparable size in Picea glauca, P. engelmannii, P. sitchensis, and P. abies.

Significance

The AFLP-based microsatellite-enriched library appears to be a rapid, cost-effective approach for isolating and developing single-locus informative genomic microsatellite markers in black spruce. The markers developed should be useful in black spruce, red spruce and other Picea species for various genetics, genomics, breeding, forensics, conservation studies and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号