首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
范泽鑫  曹坤芳 《植物学报》2005,22(5):632-640
树木生长到一定年龄后高生长停滞, 对这一现象的解释存在很多争议。成熟假说认为树木顶端分生组织分裂活性下降导致树木高生长减慢。营养限制假说认为土壤中营养元素(特别是氮素)在植物活体或枯落物中积累使土壤中可利用的养分含量降低, 细根生物量增加和叶片光合能力下降导致了地上部分生长的减缓。呼吸假说认为边材呼吸消耗随个体发育的增加使投入到高生长的碳减少。水力限制假说认为水分运输阻力随高度增加而增加导致了叶片总光合碳同化下降, 分配到高生长的生物量减少。树木发展假说认为植物用多种调节机制克服随个体发育增加的水力阻力, 包括叶片结构和生理特征的变化, 叶/边材面积比降低, 边材渗透性和树干储水能力的增加等。水力限制假说得到了较多的关注, 对不同高度树木的叶比导率、光合特征和树干生长量等测定结果支持这一假说。但对这一假说 也存在很多的争议, 主要表现在: 水力阻力是否确实随高度的增加而增加, 水力阻力的分布, 补偿机制的作用和生物量分配转变等。本文综述了树木高生长限制的4个假说以及争论的焦点, 并总结了目前研究的热点问题和今后的研究方向。  相似文献   

2.
树木高生长限制的几个假说   总被引:6,自引:0,他引:6  
树木生长到一定年龄后高生长停滞,对这一现象的解释存在很多争议.成熟假说认为树木顶端分生组织分裂活性下降导致树木高生长减慢.营养限制假说认为土壤中营养元素(特别是氮素)在植物活体或枯落物中积累使土壤中可利用的养分含量降低,细根生物量增加和叶片光合能力下降导致了地上部分生长的减缓.呼吸假说认为边材呼吸消耗随个体发育的增加使投入到高生长的碳减少.水力限制假说认为水分运输阻力随高度增加而增加导致了叶片总光合碳同化下降,分配到高生长的生物量减少.树木发展假说认为植物用多种调节机制克服随个体发育增加的水力阻力,包括叶片结构和生理特征的变化,叶/边材面积比降低,边材渗透性和树干储水能力的增加等.水力限制假说得到了较多的关注,对不同高度树木的叶比导率、光合特征和树干生长量等测定结果支持这一假说.但对这一假说也存在很多的争议,主要表现在:水力阻力是否确实随高度的增加而增加,水力阻力的分布,补偿机制的作用和生物量分配转变等.本文综述了树木高生长限制的4个假说以及争论的焦点,并总结了目前研究的热点问题和今后的研究方向.  相似文献   

3.
人工林生产力年龄效应及衰退机理研究进展   总被引:3,自引:0,他引:3  
毛培利  曹帮华  田文侠  孟凤芝 《生态学报》2011,31(11):3208-3214
研究人工林生长规律具有重要的经济和生态意义。同龄林林分郁闭后,地上部净初级生产量随着林龄增加而降低的现象近几十年引起了林业工作者的兴趣和注意并成为研究热点。多数研究试图通过光合生理、林分营养、生物量分配和林分结构等随林龄的变化规律来解释林分生产力衰退机理。研究认为,林分郁闭后水分传输阻力的增加减少了树木的光合能力;林地养分的减少使得根系生物量分配增加,导致林分叶面积减少,树木光合能力下降;对资源的竞争使得树木优势度发生变化,资源利用率降低。光合能力、林分叶面积和资源利用率的降低以及根系生物量分配的增加是林分生产力衰退的关键,而林分呼吸和林木衰老的作用不大。今后深入研究树体水分运输及其补偿机制、逆境下根系的生长过程及适应机制,并跟踪研究林分生长规律,更有助于揭示人工林生产力衰退的实质。  相似文献   

4.
Recent studies suggest that physiological traits can be affected by tree size due to stronger hydraulic limitation in taller trees. As trees vary greatly in size, both within and among species, the adaptive responses to hydraulic limitation may be different among species with different maximum sizes. To investigate this, we explored size-dependency in photosynthetic and hydraulic parameters of three Acer species (Acer mono Maxim., Acer amoenum Carr and Acer japonicum Thunb.) using trees of various sizes under well-lit conditions. Leaf stomatal conductance of the Acer species decreased with tree size, implying that water supply to leaves decreases as trees grow. In contrast, content of nitrogen increased with tree size, which may compensate for the decrease in stomatal conductance to maintain the photosynthetic rate. Although the increase in nitrogen and leaf mass per area were larger in species with larger statures, the size-dependency in stomatal conductance was not different among species, and photosynthetic rate and hydraulic conductance were maintained in the three Acer species. Therefore, we suggest that hydraulic limitation on gas exchange does not necessarily depend on the maximum height of the species and that maintenance of photosynthesis and hydraulic properties is a fundamental physiological process during tree growth.  相似文献   

5.
The hydraulic limitation hypothesis proposes that (1) reduced growth in taller trees is caused by decreased photosynthesis resulting from a decrease in hydraulic conductance promoted by a longer root‐to‐leaf flow path, and (2) this mechanism reduces stand productivity after canopy closure. This hypothesis was tested by comparing the physiology of 7 m (1 year) and 26 m (5 year) Eucalyptus saligna plantations where above‐ground productivity for the 26 m trees was approximately 69% of that for the 7 m trees, and water and nutrients were not limiting. The study compared whole tree physiology [water flux (Ql), average crown conductance (GT), crown hydraulic conductance per unit leaf area (KL), carbon isotope discrimination (δ13C)] and leaf physiology under light saturation (leaf water potential at the canopy top (ΨLEAF), photosynthetic capacity (Amax), and photosynthesis (A) and stomatal conductance (gs). KL was 50% lower in the taller trees, but whole tree Ql and GT were the same for the 7 m and 26 m trees. Photosynthetic capacity was the same for leaves at the canopy top, but δ13C was ?1.8‰ lower for the 26 m trees. A and gs were either lower in the taller trees or equal, depending on sampling date. The taller trees maintained 0.8 MPa lower ΨLEAF during the day and had 2.6‐times higher sapwood area per unit leaf area; these factors compensated for the effects of increased height and gravitational potential in the taller trees to maintain higher GT. The hydraulic limitation hypothesis (as originally stated) failed to explain the sharp decline in net primary productivity after canopy closure in this study. The effects of increased height appear to be a universal hydraulic problem for trees, but compensation mitigated these effects and maintained Ql and GT in the present study. Compensation may induce other problems (such as lower ΨLEAF or higher respiratory costs) that could reduce carbon gain or shift carbon allocation, and future studies of hydraulic limitation should consider compensation and associated carbon costs. In this study, the combination of similar GT and lower δ13C for the 26 m trees suggests that total crown photosynthesis was lower for the 26 m trees, perhaps a result of the lower ΨLEAF.  相似文献   

6.
As trees grow taller, the energetic cost of moving water to the leaves becomes higher and could begin to limit carbon gain and subsequent growth. The hydraulic limitation hypothesis states that as trees grow taller, the path length and therefore frictional resistance of water flow increases, leading to stomatal closure, reduced photosynthesis and decreased height growth in tall trees. Although this hypothesis is supported by the physical laws governing water movement in trees, its validation has been complicated by the complex structure of most tree species. Therefore, this study tested the hydraulic limitation hypothesis in Washingtonia robusta (H. Wendl.), a palm that, while growing to tall heights, is still structurally simple enough to act as a model organism for testing. There were no discernable relationships between tree height and stomatal conductance, stomatal densities, guard cell lengths, leaf dry mass per unit area (LMA) or sap flux, suggesting that these key aspects of hydraulic limitation are not reduced in taller palms. Taller palms did, however, have higher maximum daily photosynthetic assimilation rates, lower minimum leaf water potentials that occurred earlier in the day and fewer, smaller leaves than did shorter palms. Leaf epidermal cells were also smaller in taller palms compared with shorter ones. These findings are consistent with hydraulic compensation in that tall palms may be overcoming the increased path length resistance through smaller, more efficient leaves and lower leaf water potentials than shorter palms.  相似文献   

7.
Declining net primary production (NPP) with forest age is often attributed to a corresponding decline in gross primary production (GPP). We tested two hypotheses explaining the decline of GPP in ageing stands (14–115 years old) of Pinus taeda L.: (1) increasing N limitation limits photosynthetic capacity and thus decreases GPP with increasing age; and (2) hydraulic limitations increasingly induce stomatal closure, reducing GPP with increasing age. We tested these hypotheses using measurements of foliar nitrogen, photosynthesis, sap‐flow and dendroclimatological techniques. Hypothesis (1) was not supported; foliar N retranslocation did not increase and declines were not observed in foliar N, leaf area per tree or photosynthetic capacity. Hypothesis (2) was supported; declines were observed in light‐saturated photosynthesis, leaf‐ and canopy‐level stomatal conductance, concentration of CO2 inside leaf air‐spaces (corroborated by an increase in wood δ13C) and specific leaf area (SLA), while stomatal limitation and the ratio of sapwood area (SA) to leaf area increased. The sensitivity of radial growth to inter‐annual variation in temperature and drought decreased with age, suggesting that tree water use becomes increasingly conservative with age. We conclude that hydraulic limitation increasingly limits the photosynthetic rates of ageing loblolly pine trees, possibly explaining the observed reduction of NPP.  相似文献   

8.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   

9.
树高对马占相思整树水分利用的效应   总被引:1,自引:0,他引:1  
利用Granier热消散探针,于2004年观测了华南丘陵坡地常见绿化先锋树种马占相思(22年生)的树干液流,同时监测林冠上方的光合有效辐射、气温、相对湿度和0~30 cm的土壤体积含水量.结合树木的形态特征、液流密度和简化的Whitehead & Jarvis公式,分别计算了整树蒸腾、冠层气孔导度和叶面积/边材面积比值,分析了树高对整树蒸腾、冠层气孔导度和叶面积/边材面积比值的影响.结果表明:土壤水分充足时,马占相思整树蒸腾随树高呈二次多项式增加(P<0.01),冠层气孔导度日变化均呈“单峰”格型;在所有光合有效辐射范围内,高树的参比冠层气孔导度和冠层气孔导度对水汽压亏缺的敏感性均高于矮树;叶面积/边材面积比值为(1.837±0.048) m2·cm-2,并与树高呈幂函数关系.随着树木高度的增加,马占相思没有发生明显的水力限制和补偿.  相似文献   

10.
利用热消散探针(TDP)法对位于中国科学院华南植物园的木荷(Schima superba)人工纯林的15株样树进行了树干液流监测, 并结合光合有效辐射(PAR)和土壤含水量的测定, 探讨了不同季节的夜间水分补充量与树形特征和叶片生物量的关系。结果表明: 1)夜间液流活动时间与PAR同步, 但其结束时间不受PAR影响; 春、夏季夜间液流明显比秋冬季活跃。2)春、夏、秋季的夜间水分补充量与样树的胸径、冠幅、边材面积、叶片生物量呈极显著线性关系, 与树高仅在春季呈显著线性关系。3)春、夏季的夜间水分补充量主要受样树冠幅影响, 成正相关; 秋季主要受胸径影响, 成正相关; 冬季仅受树高影响。该试验说明木荷夜间水分补充与树形特征、叶片生物量关系密切, 但起主要作用的树形特征和具体关系具有季节差别。  相似文献   

11.
Land devoted to plantation forestry (50 million ha) has been increasing worldwide and the genus Eucalyptus is a popular plantation species (14 million ha) for its rapid growth and ability to grow well on a wide range of sites. Fertilization is a common silvicultural tool to improve tree growth with potential effects on stand water use, but the relationship between wood growth and water use in response to fertilization remains poorly quantified. Our objectives in this study were to determine the extent, timing and longevity of fertilization effects on water use and wood growth in a non‐water limited Eucalyptus saligna experimental forest near Hilo, HI. We evaluated the short‐ and long‐term effects of fertilization on water use by measuring sap flux per unit sapwood area, canopy conductance, transpiration per unit leaf area and water‐use efficiency in control and fertilized stands. Short‐term effects were assessed by comparing sap flux before and after fertilizer application. Long‐term effects were assessed by comparing control plots and plots that had received nutrient additions for 5 years. For the short‐term response, total water use in fertilized plots increased from 265 to 487 mm yr?1 during the 5 months following fertilization. The increase was driven by an increase in stand leaf area accompanied by an increase in sap flux per unit sapwood area. Sap flux per unit leaf area and canopy conductance did not differ during the 5 months following fertilizer additions. For the last 2 months of our short‐term measurements, fertilized trees used less water per unit carbon gain (361 compared with 751 kg H2O kg C?1 in control stands). Trees with 5 years of fertilization also used significantly more water than controls (401 vs. 302 mm yr?1) because of greater leaf area in the fertilized stands. Sap flux per unit sapwood area, sap flux per unit leaf area, and canopy conductance did not differ between control and fertilized trees in the long‐term plots. In contrast to the short‐term response, the long‐term response of water use per unit wood growth was not significant. Overall, fertilization of E. saligna at our site increased stand water use by increasing leaf area. Fertilized trees grew more wood and used more water, but fertilization did not change wood growth per unit water use.  相似文献   

12.
Linking drought to the timing of physiological processes governing tree growth remains one limitation in forecasting climate change effects on tropical trees. Using dendrometers, we measured fine‐scale growth for 96 trees of 25 species from 2013 to 2016 in an everwet forest in Puerto Rico. Rainfall over this time span varied, including an unusual, severe El Niño drought in 2015. We assessed how growing season onset, median day, conclusion, and length varied with absolute growth rate and tree size over time. Stem growth was seasonal, beginning in February, peaking in July, and ending in November. Species growth rates varied between 0 and 8 mm/year and correlated weakly with specific leaf area, leaf phosphorus, and leaf nitrogen, and to a lesser degree with wood specific gravity and plant height. Drought and tree growth were decoupled, and drought lengthened and increased variation in growing season length. During the 2015 drought, many trees terminated growth early but did not necessarily grow less. In the year following drought, trees grew more over a shorter growing season, with many smaller trees showing a post‐drought increase in growth. We attribute the increased growth of smaller trees to release from light limitation as the canopy thinned because of the drought, and less inferred hydraulic stress than larger trees during drought. Soil type accounted for interannual and interspecific differences, with the finest Zarzal clays reducing tree growth. We conclude that drought affects the phenological timing of tree growth and favors the post‐drought growth of smaller, sub‐canopy trees in this everwet forest. Abstract in Spanish is available with online material.  相似文献   

13.
Hydraulic responses to height growth in maritime pine trees   总被引:12,自引:2,他引:10  
As trees grow taller, decreased xylem path conductance imposes a major constraint on plant water and carbon balance, and is thus a key factor underlying forest productivity decline with age. The responses of stomatal conductance, leaf area: sapwood area ratio (AL : AS) and soil–leaf water potential gradient (ΔΨS–L) to height growth were investigated in maritime pine trees. Extensive measurements of in situ sap flow, stomatal conductance and (non‐gravitational) needle water potential (L = ΨL ? ρwgh) were made during 2 years in a chronosequence of four even‐aged stands, under both wet and dry soil conditions. Under wet soil conditions, L was systematically lower in taller trees on account of differences in gravitational potential. In contrast, under dry soil conditions, our measurements clearly showed that L was maintained above a minimum threshold value of ?2.0 MPa independently of tree height, thus limiting the range of compensatory change in ΔΨS–L. Although a decrease in the AL : AS ratio occurred with tree height, this compensation was not sufficient to prevent a decline in leaf‐specific hydraulic conductance, KL (50% lower in 30 m trees than in 10 m trees). An associated decline in stomatal conductance with tree height thus occurred to maintain a balance between water supply and demand. Both the increased investment in non‐productive versus productive tissues (AS : AL) and stomatal closure may have contributed to the observed decrease in tree growth efficiency with increasing tree height (by a factor of three from smallest to tallest trees), although other growth‐limiting responses (e.g. soil nutrient sequestration, increased respiratory costs) cannot be excluded.  相似文献   

14.
Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity ( K s), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stem hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced midday loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle .  相似文献   

15.
Forest growth is important both economically (yielding billions of dollars of annual revenues) and ecologically (with respect to ecosystem health and global carbon budgets). The growth of all forests follows a predictable general trend with age. In young forests, it accelerates as canopies develop; it then declines substantially soon after full canopy leaf area is reached. The classic explanation for the decline in growth invoked the increasing respiration costs required to sustain the larger masses of wood characteristic of older forests. Direct measurements of respiration have largely refuted this hypothesis, and recent work has focused on stand-level rates of resource supply, resource use, and growth. We developed and tested a hypothesis at the scale of individual trees (in relation to stand structure) to explain this declining stand-level rate of stem growth. According to our hypothesis, changes in stand structure allow dominant trees to sustain high rates of growth by increasing their acquisition of resources and using these resources efficiently (defined as stem growth per unit of resource used); smaller, nondominant trees grow more slowly as a result of their more limited acquisition of resources and a reduced rate of growth per unit of resource acquired. In combination, these two trends reduce overall stand growth. We tested this hypothesis by comparing growth, growth per unit of leaf area, and variation among trees within plots in two series of plantations of Eucalyptus in Brazil and by estimating individual-tree rates of growth and use of light, water, and nutrients in a plantation of Eucalyptus saligna in Hawaii. Our results supported the individual-tree hypothesis. We conclude that part of the universal age-related decline in forest growth derives from competition-related changes in stand structure and the resource-use efficiencies of individual trees. Received 19 February 2001; accepted 19 June 2001.  相似文献   

16.
Environmental sensitivity of gas exchange in different-sized trees   总被引:1,自引:0,他引:1  
The carbon isotope signature (δ13C) of foliar cellulose from sunlit tops of trees typically becomes enriched as trees of the same species in similar environments grow taller, indicative of size-related changes in leaf gas exchange. However, direct measurements of gas exchange in common environmental conditions do not always reveal size-related differences, even when there is a distinct size-related trend in δ13C of the very foliage used for the gas exchange measurements. Since δ13C of foliage predominately reflects gas exchange during spring when carbon is incorporated into leaf cellulose, this implies that gas exchange differences in different-sized trees are most likely to occur in favorable environmental conditions during spring. If gas exchange differs with tree size during wet but not dry conditions, then this further implies that environmental sensitivity of leaf gas exchange varies as a function of tree size. These implications are consistent with theoretical relationships among height, hydraulic conductance and gas exchange. We investigated the environmental sensitivity of gas exchange in different-sized Douglas-fir (Pseudotsuga menziesii) via a detailed process model that specifically incorporates size-related hydraulic conductance [soil–plant–atmosphere (SPA)], and empirical measurements from both wet and dry periods. SPA predicted, and the empirical measurements verified, that differences in gas exchange associated with tree size are greatest in wet and mild environmental conditions and minimal during drought. The results support the hypothesis that annual net carbon assimilation and transpiration of trees are limited by hydraulic capacity as tree size increases, even though at particular points in time there may be no difference in gas exchange between different-sized trees. Maximum net ecosystem exchange occurs in spring in Pacific Northwest forests; therefore, the presence of hydraulic limitations during this period may play a large role in carbon uptake differences with stand-age. The results also imply that the impacts of climate change on the growth and physiology of forest trees will vary depending on the age and size of the forest.  相似文献   

17.
We investigated relationships between whole-tree hydraulic architecture and stomatal conductance in Pinus palustris Mill. (longleaf pine) across habitats that differed in soil properties and habitat structure. Trees occupying a xeric habitat (characterized by sandy, well-drained soils, higher nitrogen availability and lower overstory tree density) were shorter in stature and had lower sapwood-to-leaf area ratio (A(S):A(L)) than trees in a mesic habitat. The soil-leaf water potential gradient (psiS - psiL) and leaf-specific hydraulic conductance (kL) were similar between sites, as was tissue-specific hydraulic conductivity (Ks) of roots. Leaf and canopy stomatal conductance (gs and Gs, respectively) were also similar between sites, and they tended to be somewhat higher at the xeric site during morning hours when vapour pressure deficit (D) was low. A hydraulic model incorporating tree height, A(S):A(L) and psiS-psiL accurately described the observed variation in individual tree G(Sref) (G(S) at D = 1 kPa) across sites and indicated that tree height was an important determinant of G(Sref) across sites. This, combined with a 42% higher root-to-leaf area ratio (A(R):A(L)) at the xeric site, suggests that xeric site trees are hydraulically well equipped to realize equal--and sometimes higher potential for conductance compared with trees on mesic sites. However, a slightly more sensitive stomatal closure response to increasing D observed in xeric site trees suggests that this potential for higher conductance may only be reached when D is low and when the capacity of the hydraulic system to supply water to foliage is not greatly challenged.  相似文献   

18.
Carbon storage and sequestration in tropical mountain forests and their dependence on elevation and temperature are not well understood. In an altitudinal transect study in the South Ecuadorian Andes, we tested the hypotheses that (i) aboveground net primary production (ANPP) decreases continuously with elevation due to decreasing temperatures, whereas (ii) belowground productivity (BNPP) remains constant or even increases with elevation due to a shift from light to nutrient limitation of tree growth. In five tropical mountain forests between 1050 and 3060 m a.s.l., we investigated all major above‐ and belowground biomass and productivity components, and the stocks of soil organic carbon (SOC). Leaf biomass, stemwood mass and total aboveground biomass (AGB) decreased by 50% to 70%, ANPP by about 70% between 1050 and 3060 m, while stem wood production decreased 20‐fold. Coarse and large root biomass increased slightly, fine root biomass fourfold, while fine root production (minirhizotron study) roughly doubled between 1050 and 3060 m. The total tree biomass (above‐ and belowground) decreased from about 320 to 175 Mg dry mass ha?1, total NPP from ca. 13.0 to 8.2 Mg ha?1 yr?1. The belowground/aboveground ratio of biomass and productivity increased with elevation indicating a shift from light to nutrient limitation of tree growth. We propose that, with increasing elevation, an increasing nitrogen limitation combined with decreasing temperatures causes a large reduction in stand leaf area resulting in a substantial reduction of canopy carbon gain toward the alpine tree line. We conclude that the marked decrease in tree height, AGB and ANPP with elevation in these mountain forests is caused by both a belowground shift of C allocation and a reduction in C source strength, while a temperature‐induced reduction in C sink strength (lowered meristematic activity) seems to be of secondary importance.  相似文献   

19.
The rate of leaf CO2 assimilation (A l) and leaf area determine the rate of canopy CO2 assimilation (A c) can be thought proportional to assimilate supply for growth and structural requirements of plants. Partitioning of biomass within plants and anatomy of cells within stems can determine how assimilate supply affects both stem growth and wood density. We examined the response of stem growth and wood density to reduced assimilate supply by pruning leaf area. Removing 42% of the leaf area of Eucalyptus grandis Hill ex Maiden seedlings did not stimulate leaf-level photosynthesis (A l) or stomatal conductance, contrary to some previous studies. Canopy-level photosynthesis (A c) was reduced by 41% immediately after pruning but due almost solely to continued production of leaves, and was only 21% lower 3 weeks later. Pruning consequently reduced seedling biomass by 24% and stem biomass by 18%. These reductions in biomass were correlated with reduced A c. Pruning had no effect on stem height or diameter and reduced wood density to 338 kg m−3 compared to 366 kg m−3 in control seedlings. The lower wood density in pruned seedlings was associated with a 10% reduction in the thickness of fibre cell walls, and as fibre cell diameter was invariant to pruning, this resulted in smaller lumen diameters. These anatomical changes increased the ratio of cross-sectional area of lumen to area cell wall material within the wood. The results suggest changes to wood density following pruning of young eucalypt trees may be independent of tree volume and of longer duration.  相似文献   

20.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号