首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Strain identification in situ is an important factor in the monitoring of microorganisms used in the field. In this study, we demonstrated the use of sequence-characterized amplified region (SCAR) markers to detect genomic DNA from Trichoderma harzianum 2413 from soil. Two primers (SCAR A1/SCAR A1c) were tested against DNA of 27 isolates of Trichoderma spp. and amplified a 990-bp fragment from T. atroviride 11 and a 1.5-kb fragment from T. harzianum 2413, using an annealing temperature of 68°C. These fragments showed no significant homology to any sequence deposited in the databases. The primer pair, BR1 and BR2, was designed to the 1.5-kb fragment amplified from T. harzianum 2413, generating a SCAR marker. To test the specificity of these primers, experiments were conducted using the DNA from 27 Trichoderma spp. strains and 22 field soil samples obtained from four different countries. PCR results showed that BR1 and BR2 amplified an 837-bp fragment unique to T. harzianum 2413. Assays in which total DNA was extracted from sterile and nonsterile soil samples, inoculated with spore or mycelium combinations of Trichoderma spp. strains, indicated that the BR1 and BR2 primers could specifically detect T. harzianum 2413 in a pool of mixed DNA. No other soil-microorganisms containing these sequences were amplified using these primers. To test whether the 837-bp SCAR marker of T. harzianum 2413 could be used in real-time PCR experiments, new primers (Q2413f and Q2413r) conjugated with a TaqMan fluorogenic probe were designed. Real-time PCR assays were applied using DNA from sterile and nonsterile soil samples inoculated with a known quantity of spores of Trichoderma spp. strains.  相似文献   

2.
The fungus Peronosclerospora sorghi [Weston and Uppal (Shaw)] infects both sorghum and maize and incites downy mildew disease. Pathogenic and molecular variability among isolates of P. sorghi from sorghum and maize has been reported. In the present study we developed a DNA sequence characterized amplified region (SCAR) marker for identification of isolates of P. sorghi from maize by using polymerase chain reaction (PCR). The random amplified polymorphic DNA (RAPD) primer OPB15 consistently amplified a 1,000 base pairs (bp) product in PCR only from DNA of P. sorghi isolates from maize and not from isolates of sorghum. The PCR-amplified 1,000-bp product was cloned and sequenced. The sequence of the SCAR marker was used for designing specific primers for identification of maize isolates of P. sorghi. The SCAR primers amplified a 800 bp fragment only from genomic DNA of maize isolates of P. sorghi. The SCAR primers developed in this study are highly specific and reproducible, and proved to be powerful tool for identification of P. sorghi isolates from maize.  相似文献   

3.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating wheat disease in China. Early and accurate detection of the pathogens would facilitate effective control of the diseases. DNA‐based methods now provide essential tools for accurate plant disease diagnosis. In this study, inter‐simple sequence repeats (ISSR) technique has been successfully applied to develop a sequence‐characterized amplified region (SCAR) marker for diagnosis of stripe rust of wheat and detection of Pst. In this study, one fragment unique to Pst was identified by ISSR and then sequenced. Based on the specific fragment, a pair of SCAR primers (616AF/616AR) was designed to amplify a 299‐bp DNA fragment within the sequenced region. The primers can amplify a unique DNA fragment for all tested isolates of Pst but not for the other pathogens of wheat leaves and the uninfected leaves. The polymerase chain reaction (PCR) assay could detect as low as 0.1 ng of genomic DNA in a 25.0 μl PCR reaction mixture and detect the pathogen from asymptomatic wheat leaves inoculated with Pst under glasshouse conditions.  相似文献   

4.
Dwarf bunt of wheat, caused by Tilletia controversa Kühn, is an important international quarantine disease in many countries. The objective of this investigation was to develop a diagnostic molecular marker generated from intersimple sequence repeat (ISSR) for rapid identification of T. controversa. A total of 60 primers were tested by ISSR to detect DNA polymorphisms between T. controversa and related species. The primer ISSR818 generated a polymorphic pattern displaying a 952‐ bp DNA fragment specific for T. controversa. The marker was converted into a sequence characterized amplified region (SCAR), and specific primers (TCKSF2/TCKSR2) were designed for use in a PCR detection assay. Its detection limit was 1 ng of DNA, which could be yielded by 1.1 μg of teliospores in a 25‐ μl PCR. Conclusively, a method to distinguish T. controversa from similar pathogenic fungi has been successfully developed based on the use of a SCAR marker.  相似文献   

5.
Safflower wilt, caused by Fusarium oxysporum f. sp. carthami (Foc) is a major limiting factor for safflower (Carthamus tinctorius) production worldwide. In India alone, about 40–80% disease incidence has been reported. A rapid, efficient, specific, and sensitive diagnostic technique for Foc is therefore crucial to manage Fusarium wilt of safflower. Twenty-five isolates of F. oxysporum formae speciales infecting other crops, 17 isolates of Fusarium spp. and seven isolates of other fungal pathogens of safflower along with 75 Foc isolates were used for identification of band specific to Foc using inter-simple sequence repeat (ISSR) analysis. Out of 70 ISSR primers, the one that specifically amplified a 490 bp fragment from all the Foc isolates was selected. Sequence of the amplified fragment was utilized to design sequence characterized amplified region (SCAR) primers (FocScF/FocScR). The primer pair unambiguously and exclusively amplified a DNA fragment of approximately 213 bp in all the 75 Foc isolates. The primer set was able to detect as low as 10 pg of Foc genomic DNA using conventional PCR, while the SCAR primers when coupled with real-time qPCR demonstrated detection limits of 1 pg for Foc genomic DNA and 1000 conidia/g for soil. The assay enabled reliable diagnosis of Foc DNA in contaminated safflower fields and expedited Foc detection at 72 h post inoculation in asymptomatic seedlings. This method facilitates quick and precise detection of Foc in plant and soil samples and can be exploited for timely surveillance and sustainable management of the disease.  相似文献   

6.
An Agrobacterium vitis-specific DNA fragment (pAVS3) was generated from PCR polymorphic bands amplified by primer URP 2R. A. vitis specificity of this fragment was confirmed by Southern hybridization with genomic DNA from different Agrobacterium species. Sequence-characterized amplified region (SCAR) markers were developed for A. vitis specific detection, using 24-mer oligonucleotide primers designed from the flanking ends of the 670 bp insert in pAVS3. The SCAR primers amplified target sequences only from A. vitis strains and not from other Agrobacterium species or other bacterial genera. First round PCR detected bacterial cells between 5×102 and 1×103 cfu/ml and the detection sensitivity was increased to as few as 2 cfu/ml by nested PCR. This PCR protocol can be used to confirm the potential presence of infectious A. vitis strains in soil and furthermore, can identify A. vitis strains from naturally infected crown galls.  相似文献   

7.
Agrobacterium vitis strain E26 is a promising biocontrol agent of grapevine crown gall, an economically important disease of grape worldwide. In this report, we developed a Plating‐PCR method that allows specific detection and quantification of E26 by combining classical microbiological techniques with molecular tools. Random amplified polymorphic DNA fingerprints were used to differentiate E26 from other A. vitis strains. A differentially amplified fragment from E26 was sequenced and characterized as a sequence characterized amplified region (SCAR) marker. Two primer pairs were then designed and evaluated for their specificity against E26. One of the two SCAR primer pairs, 740F/R, was further selected for specific detection of strain E26. A plating assay coupled to PCR with the SCAR primers 740F/R allowed the assessment of population dynamics of E26 in non‐sterile grape rhizosphere soil under controlled conditions.  相似文献   

8.
Dwarf bunt of wheat, caused by Tilletia controversa Kühn, is a destructive disease on wheat as well as an important internationally quarantined disease in many countries. The primer ISSR818 generated a polymorphic pattern displaying a 867-bp DNA fragment specific for T. controversa. The marker was converted into a sequence characterized amplified region (SCAR), and specific primers (TCKSF3/TCKSR3) designed for use in PCR detection assays; they amplified a unique DNA fragment in all isolates of T. controversa but not in the related pathogens. The detection limit with the primer set (TCKSF3/TCKSR3) was 5 ng of DNA which could be obtained from 5.5 μg of teliospores in a 25-μL PCR reaction mixture.  相似文献   

9.
In this work, reliable tools were developed to detect and identify the biocontrol strain CPA‐8 using DNA amplification techniques. As a first approach, the RAPD (random amplified polymorphic DNA) technique was applied to a collection of 77 related Bacillus species. Among the primers tested, the primer pair OPG1/OPG6 amplified a 668 bp specific product to the strain CPA‐8 that was sequenced and used to design SCAR (sequence‐characterised amplified regions) primer pairs. The SCAR‐4 marker amplified a semi‐specific fragment of 665 bp not only for the strain CPA‐8 but also for other 12 strains whose morphology was completely different from CPA‐8. Another approach was developed to obtain a strain‐specific genomic marker related to ecological adaptations of Bacillus amyloliquefaciens species. The primer pair F2/R2 obtained from RBAM 007760, a gene involved in surface adhesion, amplified a 265 bp fragment unique for strain CPA‐8. Our results revealed that these two molecular markers, SCAR‐4 and RBAM 007760 F2/R2 provide suitable monitoring tools to specifically identify the biocontrol CPA‐8 when applied against brown rot caused by Monilinia spp. in stone fruit. Moreover, our findings demonstrate that the strain CPA‐8 is affiliated with B. amyloliquefaciens species that was formerly designated as Bacillus subtilis.  相似文献   

10.
Aims: Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most important foliar disease on wheat in China. Early molecular diagnosis and detection of stripe rust will provide a useful aid to the accurate forecast and seasonal control of this destructive disease. Our objective was to develop PCR assays for the rapid identification and detection of P. striiformis. Methods and Results: The genomic DNA of P. striiformis and P. triticina were amplified by a pair of primers derived from conserved β‐tubulin gene sequence. A 235‐bp specific DNA fragment of P. striiformis was isolated and purified. Based on its sequence, another two primer sets were designed successfully to obtain new sequence‐characterized amplified region (SCAR) markers of P. striiformis, which could be amplified in all test isolates of P. striiformis, whereas no DNA fragment was obtained in other nontarget wheat pathogens. The detection limit of the primer set YR (f)/YR (r1) was 2·20 pg μl?1. The new SCAR markers of P. striiformis can also be detected in Pst‐infected wheat leaves postinoculated for 2 days. Conclusions: Our assays are significantly faster than the conventional methods used in the identification of P. striiformis. Significance and Impact of the Study: Development of a simple, high‐throughput assay kit for the rapid diagnosis and detection of wheat stripe rust would be anticipated in a further study.  相似文献   

11.
菠菜为雌雄异株植物,用CTAB法提取其雌、雄株成株幼嫩叶片DNA,分别构建雌、雄株DNA池,以之为模板,用已优化的ISSR体系扩增,在74条ISSR引物中,I62扩增出一条约1 200 bp雌性连锁标记,回收纯化该特异扩增片段,将其连接于pUCm-T载体,转化进大肠杆菌JM109菌株,并检测及测序。回收克隆和测序后发现该片段全长1 176 bp,富含AT,AT占57.0%。根据测序结果设计1对25 bp的特异引物将这个雌性连锁的ISSR标记转化为稳定性和特异性更好的SCAR标记。该特异引物对随机选取的雌雄菠菜单株进行PCR扩增,在雌株中均有1 176 bp的特异条带,而雄株中均无。此特异条带的获得为菠菜性别相关基因的克隆奠定基础。  相似文献   

12.
Abstract

Isolates of Pseudomonas spp. collected from the rhizosphere of sugarcane and cane stalks were screened for their antagonistic activity against Colletotrichum falcatum causing red rot disease in sugarcane. Talc formulations of the selected Pseudomonas spp. isolates improved the sugarcane vegetative sett germination and sugarcane growth under field conditions. Optimal talc formulations were assessed for their effect on induction of systemic resistance against the pathogen in the canes under artificial inoculation. All the four isolates CHAO, EP1, KKM1 and VPT4 were effective in inducing systemic resistance against C. falcatum in two seasons. In other studies, the bacterial formulations were assessed to induce resistance in sugarcane in a sick plot situation. In pathogen-infested soil the isolates KKM1 and CHAO suppressed the red rot disease development in susceptible sugarcane cultivar. Pseudomonas strains also protected sugarcane in a disease-endemic location. Pseudomonas spp treatment substantially improved the cane juice quality parameters affected by the pathogen infection. Standardization of talc formulations and application methods in the field offers potential for large-scale application of biocontrol formulations for the management of red rot disease in sugarcane growing regions.  相似文献   

13.
Anthracnose caused by Colletotrichum gloeosporioides is an economically important disease which affects greater yam (Dioscorea alata L.) worldwide. Apart from airborne conidia, the pathogen propagules surviving in soil and planting material are the major sources of inoculum. A nested PCR assay has been developed for specific detection of C. gloeosporioides in soil and planting material. In conventional (single-round) PCR, the limit of detection was 20?pg, whereas in nested PCR the detection limit increased to 0.2?pg of DNA. The primers designed were found to be highly specific and could be used for accurate identification of the pathogen up to species level. The protocol was standardized for detection of the pathogen in artificially and naturally infected field samples.  相似文献   

14.
The Asian ladybird beetle, Harmonia axyridis shows polymorphism in elytra color patterns. However, it is uncertain whether these color patterns are regulated by genetic factors. This investigation used amplified fragment length polymorphism (AFLP) analysis to determine any genetic causes of the variability of color patterns. Using four individuals of each group, AFLP analysis produced 37 polymorphic bands. Among several polymorphic bands, six AFLP markers were associated with elytra color patterns after further analysis using six additional individuals of each group. These polymorphic sites were sequenced but did not match DNA sequence data deposited in GenBank. Based on the color-associated AFLP markers, SCAR primers were designed for PCR amplification of genomic DNA. These primers (SCAR 12 and SCAR 44) were used to analyze color-associated loci and/or alleles of H. axyridis DNA. SCAR 12 primers designed from a Spectabilis type-specific fragment (AFLP 12) amplified a specific band of 530 bp in four Spectabilis individuals, but not in the insects with other color patterns.  相似文献   

15.

Aims

The objective of this work was to design an amplified fragment length polymorphism (AFLP)‐derived specific primer for the detection of Fusarium solani aetiological agent of peanut brown root rot (PBRR) in plant material and soil.

Methods and Results

Specific primers for the detection of the pathogen were designed based on an amplified region using AFLPs. The banding patterns by AFLPs showed that isolates from diseased roots were clearly distinguishable from others members of the F. solani species complex. Many bands were specific to F. solani PBRR, one of these fragments was selected and sequenced. Sequence obtained was used to develop specific PCR primers for the identification of pathogen in pure culture and in plant material and soil. Primer pair FS1/FS2 amplified a single DNA product of 175 bp. Other fungal isolates occurring in soil, included F. solani non‐PBRR, were not detected by these specific primers. The assay was effective for the detection of pathogen from diseased root and infected soils.

Conclusions

The designed primers for F. solani causing PBRR can be used in a PCR diagnostic protocol to rapidly and reliably detect and identify this pathogen.

Significance and Impact of the Study

These diagnostic PCR primers will aid the detection of F. solani causing PBRR in diseased root and natural infected soils. The method developed could be a helpful tool for epidemiological studies and to avoid the spread of this serious disease in new areas.  相似文献   

16.
Cotton blight, caused by the oomycete Phytophthora boehmeriae, is a serious disease of cotton in China. In wet weather conditions, P. boehmeriae is usually the primary pathogen, followed by many saprophytic fungi and pathogens such as Pythium spp., Fusarium spp., Rhizoctonia and others. As P. boehmeriae grows much slower than other pathogens, it is difficult to isolate and identify. A rapid and accurate method for its specific identification is necessary for the detection of blight in infected cotton tissue. The internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) from three isolates of P. boehmeriae were amplified using the polymerase chain reaction (PCR) with the universal primers DC6 and ITS4. PCR products were cloned and sequenced. The sequences were aligned with those published of 50 other Phytophthora species, and a region specific to P. boehmeriae was used to construct the specific PCR primers PB1 and PB2. Over 106 isolates of 14 Phytophthora species and at least 20 other fungal species were used to check the specificity of the primers. PCR amplification with primers PB1 and PB2 resulted in the amplification of a product of approximately 750 bp only from isolates of P. boehmeriae. Using primers PB1 and PB2, detection sensitivity was approximately 10 fg DNA/μl. In inoculated plant material, P. boehmeriae could be detected in tissue 1 day after inoculation, prior to the appearance of symptoms. The PB primer‐based PCR assay provides an accurate and sensitive method for detecting P. boehmeriae in cotton tissue.  相似文献   

17.
Abstract

A method is described for developing a sheep‐ vs. goat‐specific DNA marker using sequence characterized amplified regions (SCARs) derived from a random amplified polymorphic DNA (RAPD) marker from sheep DNA samples. A sheep 645 bp DNA fragment that was absent in goat DNA was identified by analyzing pools of sheep and goat DNA with RAPD primers. This fragment was cloned and partially sequenced to design extended, strand‐specific 24‐mer oligonucleotide primers. Each primer contained the original 10 bases of the RAPD primer and the following 14 internal bases. The pair of primers resulted in the amplification of a single band of 645 bp when used to amplify sheep DNA, and in no amplification when used to amplify goat DNA. These SCAR primers successfully amplified the equivalent of DNA from one nucleated sheep cell in a sample of 5000 nucleated goat cells. This level of sensitivity is especially desirable for research involving the detection of interspecific chimerism.  相似文献   

18.
 Restriction fragment length polymorphism (RFLP) and sequencing were used to elucidate the genetic relationship between phytoplasmas that cause white lead disease and grassy shoot disease in sugarcane and white leaf disease in gramineous weeds found in the cane-growing areas (Crowfoot grass, Bermuda grass and Brachiaria grass). A 1.35-kb DNA fragment encoding for the 16s rRNA was amplified by PCR using universal primers and analysed by digestion with nine restriction endonucleases. A DNA fragment containing the 3′ end of the 16s rRNA and the spacer region between the 16s rRNA and the tRNA(Ile) was amplified by PCR and sequenced. Analysis of the RFLP patterns and of the sequence showed that grassy shoot and white leaf diseases in sugarcane are caused by two different phytoplasmas. Sequence analysis of phytoplasma DNA obtained from three species of weeds showing symptoms of white leaf disease failed to detect any organism that is identical to those infecting the sugarcane. Moreover the phytoplasma species that infect the three types of gramineous weeds, although closely related, are nevertheless different Received: 15 April 1997 / Accepted: 18 April 1997  相似文献   

19.
Colletotrichum capsici is an important fungal species that causes anthracnose in many genera of plants causing severe economic losses worldwide. A primer set was designed based on the sequences of the ribosomal internal transcribed spacer (ITS1 and ITS2) regions for use in a conventional PCR assay. The primer set (CcapF/CcapR) amplified a single product of 394 bp with DNA extracted from 20 Mexican isolates of C. capsici. The specificity of primers was confirmed by the absence of amplified product with DNA of four other Colletotrichum species and eleven different fungal genera. This primer set is capable of amplifying only C. capsici from different contaminated tissues or fungal structures, thereby facilitating rapid diagnoses as there is no need to isolate and cultivate the fungus in order to identify it. The sensitivity of detection with this PCR method was 10 pg of genomic DNA from the pathogen. This is the first report of a C. capsici-specific primer set. It allows rapid pathogen detection and provides growers with a powerful tool for a rational selection of fungicides to control anthracnose in different crops and in the post-harvest stage.  相似文献   

20.
A method is described for the development of DNA markers for detection of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in predator gut analysis, based on sequence characterized amplified regions (SCARs) derived from a randomly amplified polymorphic DNA (RAPD) band. A 1200-bp DNA fragment of H. armigera, absent in the predator band pattern and in other closely related prey species, was identified by RAPD analysis. This fragment was cloned and its extremes sequenced to design extended strand-specific 20-mer oligonucleotide primers. Three pairs of SCAR primers, which amplified three different DNA fragments, were used to study the effect of fragment length on detection of prey in the predator gut. Using the pair of primers that amplified the longest fragment of H. armigera DNA, a single band of 1100 bp was obtained, but its detection was not possible in the predator gut. Detection of the ingested prey was possible with the other two pairs of SCAR primers, obtaining bands of 600 and 254 bp, respectively. Detection of H. armigera DNA in the gut of the predator Dicyphus tamaninii was evaluated immediately after ingestion (t = 0) and after 4 h. Detection of H. armigera DNA after 4 h was only possible using the pair of primers that amplified the shortest fragment (254 bp). The test for specificity, using these last pair of primers, showed that H. armigera was the only species detected. The detection threshold was defined at a 1:8192 dilution of a H. armigera whole egg in all samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号