首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V‐C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA‐A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2, Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low‐cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V‐C.

Significance and Impact of the Study

Incidence of phytoplasma diseases is increasing worldwide and particularly in the tropical and subtropical world. Co‐infection of phytoplasma and virus(s) is also common. Therefore, use of single primer PCR in detecting these pathogens would require more time and effort, whereas multiplex PCR involving several pairs of primers saves time and reduces cost. In this study, we have developed a multiplex nested PCR assay that provides more sensitive and specific detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma in white jute simultaneously. It is the first report of simultaneous detection of CoGMV and a phytoplasma in Corchorus capsularis by multiplex nested PCR.  相似文献   

2.

Background  

Pathogen detection using DNA microarrays has the potential to become a fast and comprehensive diagnostics tool. However, since pathogen detection chips currently utilize random primers rather than specific primers for the RT-PCR step, bias inherent in random PCR amplification becomes a serious problem that causes large inaccuracies in hybridization signals.  相似文献   

3.

Background  

Coxiella burnetii contains the IS1111 transposase which is present 20 times in the Nine Mile phase I (9Mi/I) genome. A single PCR primer that binds to each IS element, and primers specific to a region ~500-bp upstream of each of the 20 IS1111 elements were designed. The amplified products were characterized and used to develop a repetitive element PCR genotyping method.  相似文献   

4.
Black root rot, caused by Fusarium solani f.sp. pisi, is a devastating soil‐borne disease in chickpea in Iran with no effective control measures. With the aim of finding applicable biocontrol agents to alleviate the malady, isolates of Actinomycetes isolated from soil and their antagonistic effect against F. solani f.sp. pisi were evaluated both in vitro and in vivo. More than 100 Actinomycetes isolates were screened for their antifungal activities against the pathogen. The most active isolates were evaluated in greenhouse for their biocontrol performance. Based on the results of dual cultures in screening evaluations, the size of inhibition zone of fungal growth, and the most effective antagonist isolates (S3, S12 and S40) were selected for further studies. Identity of active isolates was determined, in this regard, 16S rDNA of isolates were amplified using universal bacterial primers FD1 and RP2. The PCR products were purified and sequenced. Sequence analysis of 16S rDNA was then performed using NCBI BLAST method. Comparison of the near full length 16S rRNA sequence of isolates to GenBank sequences demonstrated that isolates S3 and S12 were most similar to Streptomyces antibioticus, while isolate S40 was most similar to Streptomyces peruviensis. Biocontrol studies of these isolates in control of the disease in greenhouse significantly decreased the disease severity. Actinomycetes isolate S12 demonstrated the greatest effect in reducing disease than the other two. Results of this research are at preliminary stage for developing biocontrol agents. These data can be utilized as a platform for future studies with the aim of commercializing these biocontrol products and hoping to step towards sustainable agriculture.  相似文献   

5.

Background  

The soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89).  相似文献   

6.

Background  

Francisella (F.) tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR) have been developed but are restricted to reference laboratories.  相似文献   

7.
An Agrobacterium vitis-specific DNA fragment (pAVS3) was generated from PCR polymorphic bands amplified by primer URP 2R. A. vitis specificity of this fragment was confirmed by Southern hybridization with genomic DNA from different Agrobacterium species. Sequence-characterized amplified region (SCAR) markers were developed for A. vitis specific detection, using 24-mer oligonucleotide primers designed from the flanking ends of the 670 bp insert in pAVS3. The SCAR primers amplified target sequences only from A. vitis strains and not from other Agrobacterium species or other bacterial genera. First round PCR detected bacterial cells between 5×102 and 1×103 cfu/ml and the detection sensitivity was increased to as few as 2 cfu/ml by nested PCR. This PCR protocol can be used to confirm the potential presence of infectious A. vitis strains in soil and furthermore, can identify A. vitis strains from naturally infected crown galls.  相似文献   

8.
We report a rapid diagnosis of soya bean (Glycine max L.) root rot caused by Fusarium culmorum, using a loop‐mediated isothermal amplification (LAMP) assay. We used the CYP51C gene sequence to design LAMP assay primers specific for F. culmorum. The LAMP assay amplified the target gene efficiently in 60 min at 63°C. The sensitivity of the assay was 100 pg/μl of genomic DNA. Among the tested soya bean pathogens, a positive colour (sky blue) was only observed in the presence of F. culmorum with the addition of hydroxynaphthol blue (HNB) dye prior to amplification, whereas other species isolates showed no colour change. Suspected diseased soya bean samples collected in the field from Jiangsu, Shandong and Anhui provinces and Beijing were diagnosed successfully using the LAMP assay reported here. This study provides a new and readily available method for rapid diagnosis of soya bean root rot caused by F. culmorum.  相似文献   

9.
Fusarium solani is an important pathogen causing wilt disease of guava in India. In this work, we analyzed seven representative isolates of F. solani, collected from different places of India, by restriction fragment length polymorphism (RPLP) using HindIII or DraI restriction endonucleases and random amplified polymorphic DNA (RAPD). Pattern of restriction enzyme revealed a similar restriction cut type cluster in the isolate namely, Allahabad (isolate-3), Faizabad (isolate-4), Unnao (isolate-5) and Lucknow (isolate-6) region, while other cluster was consist of isolate from Ranchi (isolate-2) and Ludhiana (isolate-7). Slightly variable results were obtained when 10 randomly amplified polymorphic DNA markers (OPA01–OPA10) tested in the genome of Fusarium solani and grouped on basis of obtained allelic data. RAPD fingerprinting showed a higher variability than RFLP, and each isolate had a unique electrophoretic pattern with five of the ten primers used. Our results show that RAPD much efficient to distinguish between all F. solani isolate tested.  相似文献   

10.
Agrobacterium vitis strain E26 is a promising biocontrol agent of grapevine crown gall, an economically important disease of grape worldwide. In this report, we developed a Plating‐PCR method that allows specific detection and quantification of E26 by combining classical microbiological techniques with molecular tools. Random amplified polymorphic DNA fingerprints were used to differentiate E26 from other A. vitis strains. A differentially amplified fragment from E26 was sequenced and characterized as a sequence characterized amplified region (SCAR) marker. Two primer pairs were then designed and evaluated for their specificity against E26. One of the two SCAR primer pairs, 740F/R, was further selected for specific detection of strain E26. A plating assay coupled to PCR with the SCAR primers 740F/R allowed the assessment of population dynamics of E26 in non‐sterile grape rhizosphere soil under controlled conditions.  相似文献   

11.

Aim

To examine the inhibition effects of rhizosphere fungal strain MF‐91 on the rice blast pathogen Magnaporthe grisea and sheath blight pathogen Rhizoctonia solani.

Methods and Results

Rhizosphere fungal strain MF‐91 and its metabolites suppressed the in vitro mycelial growth of R. solani. The inhibitory effect of the metabolites was affected by incubation temperature, lighting time, initial pH and incubation time of rhizosphere fungal strain MF‐91. The in vitro mycelial growth of M. grisea was insignificantly inhibited by rhizosphere fungal strain MF‐91 and its metabolites. The metabolites of rhizosphere fungal strain MF‐91 significantly inhibited the conidial germination and appressorium formation of M. grisea. Moreover, the metabolites reduced the disease index of rice sheath blight by 35·02% in a greenhouse and 57·81% in a field as well as reduced the disease index of rice blast by 66·07% in a field. Rhizosphere fungal strain MF‐91 was identified as Chaetomium aureum based on the morphological observation, the analysis of 18S ribosomal DNA internal transcribed spacer sequence and its physiological characteristics, such as the optimal medium, temperature and initial pH for mycelial growth and sporulation production.

Conclusions

Rhizosphere fungus C. aureum is effective in the biocontrolling of rice blast pathogen M. grisea and sheath blight pathogen R. solani both in in vitro and in vivo conditions.

Significance and Impact of the Study

This study is the first to show that rhizosphere fungus C. aureum is a potential fungicide against rice blast and sheath blight pathogens.  相似文献   

12.
Fusarium head blight (FHB), also called scab, is a devastating and insidious disease of cereals including wheat (Triticum spp.) and barley (Hordeum vulgare L.) worldwide. Apart from direct yield losses, the most serious concern about FHB is the contamination of the crop with mycotoxins, which pose a health risk to human and livestock. Recent research reported that phylogenetic species F. asiaticum (Fa) and F. graminearum (Fg) were the major causal agents of FHB from infected wheat heads in China. To investigate the population structure of Fusarium species in China by species‐specific as well as the chemotype‐specific markers, sequence‐related amplified polymorphism (SRAP) markers were screened on representative isolates of F. asiaticum‐NIV, F. asiaticum‐ 3ADON and F. graminearum‐15ADON to find amplification products characteristic of either species or chemotypes. Selected amplified fragments were cloned and sequenced so that sequence‐characterized amplified region (SCAR) primer pairs could be developed which permit specific detection of Fusarium species using conventional PCR. Primer pairs SCAR‐Fa1 and SCAR‐Fg1 were confirmed to be able to amplify specific products only in F. asiaticum and F. graminearum isolates, respectively. These species‐specific primers were applied to determine genetic division of F. asiaticum and F. graminearum isolates collected in Yangtze–Huaihe valley. The results indicated that F. asiaticum was the predominant species causing FHB in this wheat production area. It is the first report that SRAP markers were adapted for species characterization in Fusarium isolates.  相似文献   

13.
Aims: To develop a rapid, sensitive, specific tool for the detection and quantification of Lactococcus garvieae in food and environmental samples. Methods and Results: A real‐time quantitative PCR (qPCR) assay with primers for CAU12F and CAU12R based on the 16S rRNA gene of L. garvieae was successfully established. The limit of detection for L. garvieae genomic DNA was 1 ng DNA in conventional PCR and 32 fg with a mean CT value of 36·75 in qPCR. Quantification of L. garvieae vegetative cells was linear (R2 = 0·99) over a 7‐log‐unit dynamic range down to ten L. garvieae cells. Conclusions: This method is highly specific, sensitive and reproducible for the detection of L. garvieae compared to gel‐based conventional PCR assays, thus providing precise quantification of L. garvieae in food and natural environments. Significance and Impact of the Study: This work provides efficient diagnostic and monitoring tools for the rapid identification of L. garvieae, an emerging pathogen in aquaculture and an occasional human pathogen from other members of the genus Lactobacillus.  相似文献   

14.
Genetic diversity of the isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt collected from 12 states representing different agro-ecological regions of India was determined through randomly amplified polymorphic DNA (RAPD) markers. The UPGMA cluster analysis grouped the isolates into eight categories showing high magnitude of genetic diversity. Each group had the isolates from different states present in various agro-ecological regions of India. Therefore, the groups generated through the RAPD analysis were not corresponding to area of the origin of the isolates. The RAPD primers, namely, OPA 7 and OPA 11 produced Foc specific fragment of ≈1.3 kb and ≈1.4 kb, respectively in all the isolates. These fragments were eluted, purified, cloned in pGEM-T Easy vector and sequenced. Primers were designed with sequence information of these two fragments using primer.3 software. Two sets of sequence characterized amplified region markers (SC-FOC 1 and SC-FOC 2) developed from the sequences of these fragments were found to be specific to Foc and produced an amplicon of 1.3 and 1.4 kb, respectively. These set of markers were validated against the isolates of the pathogen collected from different locations of India representing various races of the pathogen. They are non-specific to the other Fusarium species, Rhizoctonia solani and R. bataticola.  相似文献   

15.

Aims

Enterocytozoon hepatopenaei is an emerging microsporidian parasite that has been linked to recent losses caused by white faeces syndrome (WFS) in cultivated giant or black tiger shrimp Penaeus (Penaeus) monodon and whiteleg shrimp Penaeus (Litopenaeus) vannamei in Asia. To more accurately assess its impact on shrimp production and to determine reservoir carriers for control measures, our objective was to establish a loop‐mediated isothermal amplification (LAMP) assay combined with colorimetric nanogold (AuNP) for rapid, sensitive and inexpensive detection of this parasite.

Methods and Results

A set of six specific primers was designed to successfully detect the SSU rRNA gene of E. hepatopenaei by a LAMP reaction of 45 min at 65°C combined with visual detection of the amplification product via hybridization at 65°C for 5 min with a ssDNA‐labelled nanogold probe, followed by salt‐induced AuNP aggregation (total assay time, approximately 50 min). This method gave similar results to LAMP followed by electrophoresis or spectrophotometric detection, and it was more sensitive (0·02 fg total DNA) than a conventional nested PCR (0·2 fg total DNA). The new method gave negative results with shrimp DNA templates extracted from diseased shrimp containing other pathogens, indicating that the LAMP‐AuNP assay was specific for E. hepatopenaei.

Conclusions

Without sacrificing sensitivity or specificity, the new LAMP‐AuNP assay significantly reduced the time, ease and cost for molecular detection of E. hepatopenaei in shrimp.

Significance and Impact of the study

The new method employs simple, inexpensive equipment and involves simple steps making it applicable for small field laboratories. Wider application of the method to screen broodstock before use in a hatchery, to screen postlarvae before stocking shrimp ponds, to test for natural carriers and to monitor shrimp in rearing ponds would help to assess and reduce the negative impact of this parasite in shrimp farming.  相似文献   

16.
The necrotrophic fungus Thanatephorus cucumeris (anamorph Rhizoctonia solani) is among the most important soil‐borne pathogens which causes tomato foot and root rot worldwide. We investigated virulence and genetic relationships among and within different taxonomic groups of R. solani from the tomato‐growing regions in the north‐east of Iran. Characterization of R. solani taxonomic groups revealed that, of 56 isolates, four were AG‐2‐1, 16 were AG‐3 PT, 21 were AG‐4 HG‐I and 15 were AG‐4 HG‐II. Because interprimer binding site (iPBS), which is based on amplification of retrotransposons, is known as novel and powerful DNA fingerprinting technology, we selected four iPBS primers, which can detect polymorphisms of tomato foot root and root rot pathogen, for investigating genotypic variability of the isolates. The iPBS analyses separated various taxonomic groups of R. solani and showed great diversity among the isolates, demonstrating that the R. solani isolates obtained from tomato were not a clonal population. Crop rotation strategies and geographic location seem to be important factors affecting genetic structure of the isolates. Pathogenicity tests on tomato cultivar ‘Mobil’ showed significant differences in the virulence of various isolates. The overall results indicated that isolates of AG‐3 and AG‐4 were more virulent than AG‐2‐1. There was no significant correlation between genetic diversity and virulence of the isolates. This is the first report of R. solani AG‐4 HG‐II, causing tomato foot and root rot. Also, our research is the first in assessment of genetic diversity in fungal populations using iPBS molecular markers.  相似文献   

17.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating wheat disease in China. Early and accurate detection of the pathogens would facilitate effective control of the diseases. DNA‐based methods now provide essential tools for accurate plant disease diagnosis. In this study, inter‐simple sequence repeats (ISSR) technique has been successfully applied to develop a sequence‐characterized amplified region (SCAR) marker for diagnosis of stripe rust of wheat and detection of Pst. In this study, one fragment unique to Pst was identified by ISSR and then sequenced. Based on the specific fragment, a pair of SCAR primers (616AF/616AR) was designed to amplify a 299‐bp DNA fragment within the sequenced region. The primers can amplify a unique DNA fragment for all tested isolates of Pst but not for the other pathogens of wheat leaves and the uninfected leaves. The polymerase chain reaction (PCR) assay could detect as low as 0.1 ng of genomic DNA in a 25.0 μl PCR reaction mixture and detect the pathogen from asymptomatic wheat leaves inoculated with Pst under glasshouse conditions.  相似文献   

18.
For the detection of Fusarium oxysporum f. sp. cucumerinum pathogenic groups, a specific PCR-based marker was developed. Specific random amplified polymorphic DNA (RAPD) markers which identified in four pathogenic groups I, II, III, and IV were cloned into PGem-Teasy vector. Cloned fragments were sequenced, and used for developing sequence characterized amplified regions (SCAR) primers for detection of pathogenic groups. F. oxysporum f. sp. cucumerinum isolates belonging to four pathogenic groups in India, cucumber nonpathogenic F. oxysporum, F. oxysporum f. sp. moniliforme and melonis, Fusarium udum, and isolate of Alternaria sp. were tested using developed specific primers. A single 1.320 kb, 770 bp, 1.119 kb, and 771 bp fragment were amplified from pathogenic group I, II, III, and IV isolates, respectively. Results showed the PCR based marker, which used in this research work, could detect up to 1 ng of fungal genomic DNA. The specific SCAR primers and PCR technique developed in this research easily detect and differentiate isolates of each F. oxysporum f. sp. cucumerinum pathogenic groups.  相似文献   

19.
In Brazil, Meloidogyne mayaguensis has become a threat to guava production. Approximately a third of the cultivated area is infested, leading almost inevitably to the decimation of the orchards. Because parasitized trees develop rotten roots as the disease progresses, the possibility that a soil‐borne pathogen could be involved was investigated. From several nematode‐free or nematode‐infested orchards, nearly 2000 root fragments were tested for bacteria and fungi. Positive isolations were obtained from nematode‐infested areas only and were predominantly identified as Fusarium sp. In a 5‐month microplot experiment, guava seedlings were uninoculated (control) or were inoculated with M. mayaguensis only or with this nematode and 21 days later with one of 11 Fusarium sp. isolates. A Scott–Knot analysis of several vegetative variables and of the extent of root rot allowed the generation of a dissimilarity dendrogram that indicated that four Fusarium sp. isolates were particularly associated with damage to the seedlings. Upon identification of these isolates as Fusarium solani, a 6‐month microplot experiment was set up, in which guava seedlings were uninoculated or were inoculated with one of the following: (i) M. mayaguensis only, (ii) four F. solani isolates, separately, (iii) four F. solani isolates separately, combined with physical injury of the roots with a knife, (iv) M. mayaguensis, and 21 days later with four F. solani isolates, separately. No root rot and virtually no effect on all variables were observed in the seedlings inoculated with the fungus isolates, with or without physical injury. Major root rot and a negative effect on all variables were observed in the seedlings inoculated with M. mayaguensis and all four F. solani isolates. This characterizes guava decline as a complex disease caused by the synergistic effect of these organisms, in which parasitism by the nematode predisposes the plants to root decay caused by the fungus.  相似文献   

20.
Inteins (internal proteins) are self‐splicing transportable genetic elements present in conserved regions of housekeeping genes. The study highlights the importance of intein as a potential diagnostic marker for species‐specific identification of Candida tropicalis, a rapidly emerging opportunistic human pathogen. Initial steps of primer validation, sequence alignment, phylogenetic tree analysis, gel electrophoresis and real‐time polymerase chain reaction (PCR) assays were performed to confirm the specificity of the designed primers. The primers were selective for C. tropicalis with 100% inclusivity and showed no cross‐species or cross‐genera matches. The established technique is a prototype for developing multifaceted PCR assays and for point‐of‐care testing in near future.

Significance and Impact of the Study

Development of molecular markers for specific detection of microbial pathogens using real‐time polymerase chain reaction (PCR) is an appealing and challenging technique. A real‐time PCR is an emerging technology frequently used to detect the aetiologic agents. In recent times, designing species‐specific primers for pathogen detection is gaining momentum. The method offers rapid, accurate and cost‐effective strategy to identify the target, thus providing sufficient time to instigate appropriate chemotherapy. The study highlights the use of intein DNA sequence as molecular markers for species‐specific identification of Candida tropicalis. The study also offers a prototype model for developing multifaceted PCR assays using intein DNA sequences, and provides a developmental starting point for point‐of‐care testing in near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号