首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interrelations between the action of acetylcholine (ACh) and cadmium ions (Cd2+) on bioelectrogenesis of Nitellopsis obtusa cells were investigated. We analyzed repetitively triggered action potentials (AP), their reproducibility, shape and dynamics of membrane potential after AP induction. ACh significantly increased membrane permeability only at high concentrations (1 mM and 5 mM). Repolarisation level of action potential after the first stimulus was much more positive in all cells treated with ACh as compared to the control. Differences of membrane potentials between points just before the first and the second stimuli were 23.4±.0 mV (control); 40.4±5.9 mV (1 mM ACh solution) and 57.7 ± 8.5 mV (5 mM ACh solution). Cd2+ at 20 μM concentration was examined as a possible inhibitor of acetylcholinesterase (AChE) in vivo. We found that cadmium strengthens depolarizing effect of acetylcholine after the first stimulus. The highest velocity of AP repolarization was reduced after ACh application and Cd2+strengthened this effect. There were no differences in dynamics of membrane potential after repetitively triggered action potentials in ACh or ACh and Cd2+ solutions. This shows that cadmium in small concentration acts as inhibitor of acetylcholinesterase.  相似文献   

2.
The effect of calcium (Ca2+) on Trifolium repens L. seedlings subjected to cadmium (Cd2+) stress was studied by investigating plant growth and changes in activity of antioxidative enzymes. Physiological analysis was carried out on seedlings cultured for 2 weeks on half-strength Hoagland medium with Cd2+ concentrations of 0, 400 and 600 μM, and on corresponding medium supplied with CaCl2 (5 mM). Exposure to increasing Cd2+ reduced the fresh weight of the upper part (stems + leaves) of the seedlings more strongly than that of the root system. In both parts of T. repens seedlings H2O2 level and lipid peroxidation increased. In the upper part, Cd2+ exposure led to a significant decrease in the activity of superoxide dismutase, catalase and glutathione peroxidase and an increase in ascorbate peroxidase activity. In contrast, the roots showed an increase in the activity of antioxidative enzymes under Cd2+ stress. Ca2+ addition to medium reduced the Cd2+ accumulation, and considerably reversed the Cd2+-induced decrease in fresh mass as well as the changes in lipid peroxidation in the both parts of T. repens seedlings. Ca2+ application diminished the Cd2+ effect on the activity of antioxidative enzymes in the upper part, even though it did not significantly affect these enzymes in the roots. So the possible mechanisms for the action of Ca2+ in Cd2+ stress were considered to reduce Cd2+ accumulation, alleviate lipid peroxidation and promote activity of antioxidative enzymes.  相似文献   

3.
Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly cadmium (Cd2+). To test the effects of a calcium (Ca2+) treatment on Cd2+ accumulation and plant tolerance to this heavy metal, plants of two citrus genotypes, Cleopatra mandarin (CM) and Carrizo citrange (CC), were watered with increasing concentrations of Cd2+, and phytochelatin (PC) and glutathione (GSH) content were measured. Both genotypes were able to synthesise PCs in response to heavy metal intoxication, although CM seems to be a better Cd2+ excluder than CC. However, data indicate that CC plants had a higher capacity for regenerating GSH than CM plants. In this context, the effects of Ca2+ treatment on Cd2+ accumulation, plant survival and PC, GSH and oxidised glutathione (GSSG) content were assessed. Data indicate that treatment with Ca2+ had two positive effects on citrus physiology: it reduced Cd+2 uptake into roots and also increased GSH content (even in the absence of Cd2+). Overall, the data indicate that although Cd2+ exclusion is a powerful mechanism to avoid heavy metal build‐up into photosynthetic organs, the capacity to maintain optimum GSH levels to feed PC biosynthesis could also be an important factor in stress tolerance.  相似文献   

4.
The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.  相似文献   

5.
In the present study Prosopis juliflora plants grown in hydroponics solution were exposed to 50,100 and 1000 μM CdCl2. The cadmium uptake, transport and toxicity on the photosynthetic activities in the plants were measured at 48 h after starting cadmium treatments. The results showed that the concentration of Cd2+ in P. juliflora tended to increase with addition of Cd2+ to hydroponics solution. However, the increase of Cd2+ in roots and leaves varied largely. In this sense, the accumulation of Cd2+ in P. juliflora roots increased significantly in proportion with the addition of this metal. In contrast a relatively low level of Cd2+ transportation index, and bioaccumulation factor were found in P. juliflora at 48 h after of treatments. On the other hand the maximum photochemical efficiency of photosystem II (Fv/Fm) and the activity of photosystem II (Fv/Fo) ratios in P. juliflora leaf treated with Cd2+ not showed significantly changes during the experiment. These results suggested that the photosynthetic apparatus of P. juliflora was not the primary target of the Cd2+ action. Further studies will be focused in understanding the participation of the root system in Prosopis plants with the rhizosphere activation and root adsorption to soil Cd2+ under natural conditions.  相似文献   

6.
重金属镉(Cd)在植物体内的转运途径及其调控机制   总被引:19,自引:0,他引:19  
王晓娟  王文斌  杨龙  金樑  宋瑜  姜少俊  秦兰兰 《生态学报》2015,35(23):7921-7929
重金属镉(Cd)的毒害效应与其由土壤向植物地上部分运输有关,揭示Cd~(2+)转运途径及其调控机制可为提高植物抗镉性以及镉污染的植物修复提供依据。对Cd~(2+)在植物体内的转运途径,特别是限制Cd~(2+)移动的细胞结构和分子调控机制研究进展进行了回顾。Cd~(2+)通过共质体和质外体途径穿过根部皮层进入木质部的过程中,大部分在皮层细胞间沉积,少部分抵达中柱后转移到地上部分。为了免受Cd~(2+)的危害,植物体产生了多种限制Cd~(2+)吸收和转移的生理生化机制:1)环绕在内皮层径向壁和横向壁上的凯氏带阻止Cd~(2+)以质外体途径进入木质部;2)螯合剂与进入根的Cd~(2+)螯合形成稳定化合物并区隔在液泡中;3)通过H+/Cd~(2+)离子通道等将Cd~(2+)逆向转运出根部。植物共质体和质外体途径转运重金属镉的能力以及两条途径的串扰尚待进一步明晰和阐明。  相似文献   

7.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.  相似文献   

8.
We have calibrated the alkaline protocol of the plant comet (Single Cell Gel Electrophoresis) assay as a method for detecting the extent of induced DNA damage in potato plants (Solanum tuberosum L. cultivar Korela). After 2 and 24 h treatments of the rooted cuttings with the heavy metal cadmium (Cd2+), a dose–response increase in DNA damage was noted versus controls in root nuclei. With a 24 h recovery period, the Cd2+-induced DNA damage in roots increased significantly. No significant increase in DNA damage was demonstrated in leaf nuclei after 24 h Cd2+ treatments, but continuous Cd2+ treatments for 2 weeks resulted in an increase in leaf DNA damage. This increase may be however associated with necrotic and apoptotic DNA fragmentation, as the affected plants had inhibited growth and distorted yellowish leaves. For comparison, the monofunctional alkylating agent ethyl methanesulphonate, and γ-rays were assessed for induced DNA damage. Analysis of the accumulation of cadmium by inductively coupled plasma optical emission spectrometry demonstrates that roots accumulate almost 9-fold more cadmium than aboveground parts of the rooted potato cuttings. This may explain the absence of Cd2+ genotoxicity in leaves after short-term treatments.  相似文献   

9.
The uptake and accumulation of iron in cucumber roots exposed to cadmium were investigated with Fe sufficient and deficient cucumber plants using Mössbauer spectroscopy, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and ferric chelate reductase activity measurements. Both Fe sufficient and Fe deficient plants were applied. In the case of Fe sufficient cucumber roots grown in nutrient solution with 10 μM Cd no changes were found in the occurrence of Fe species (mostly hydrous ferric oxides and ferric-carboxylate complexes) compared to the control where no Cd was added. In the Fe deficient roots pretreated with 0, 0.1, 1, 10 and 100 μM Cd for 3 h then supplied also with 0.5 mM 57Fe-citrate for 30 min, FeII was identified in a hexaaqua complex form. The relative amount of FeII was decreasing simultaneously with increasing Cd concentration, while the relative occurrence of FeIII species and total Fe concentration were increasing. The results support the inhibitory effect of Cd on Fe-chelate reduction. Although the reductase activity at 10 and 100 μM Cd treatment was lower than in the iron sufficient control plants, FeII could be identified by Mössbauer spectroscopy whereas in the Fe sufficient control, this form was below detection limit. These data demonstrate that the influx and the reoxidation of FeII was decreased by Cd, consequently, they refer to the competition of Cd2+ and Fe2+ during the membrane transport and the inhibition of the reoxidation process.  相似文献   

10.
邹淑华  邓平香  龙新宪 《微生物学报》2019,59(12):2306-2322
重金属胁迫对植物内生细菌群落结构的影响在很大程度上是未知的,目前也很少有研究超积累植物内生细菌的群落结构与多样性对根际土壤中重金属的响应。【目的】探索在不同镉污染水平下,超积累(HE)和非超积累生态型(NHE)东南景天的根系、茎和叶片中内生细菌的群落结构与多样性的变化及其差异性,试图从植物-内生菌之间的相互关系的角度补充解释2种生态型东南景天对有效态镉忍耐和积累能力的差异。【方法】采用Illumina新一代测序方法分析了在不同Cd~(2+)浓度土壤上生长的2种生态型东南景天根、茎和叶中的内生细菌群落结构。【结果】高浓度Cd~(2+)抑制NHE东南景天的生长,内生细菌的丰富度和多样性也降低;然而,高浓度Cd~(2+)促进HE东南景天的生长,茎和根系内生细菌的丰富度增加。在3种土壤上,2种生态型东南景天叶片、茎和根系内生细菌均以变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)占优势。随着土壤中Cd~(2+)浓度的增加,HE东南景天叶片中Gammaproteobacteria纲、Negativicutes纲和Clostridia纲的相对丰度显著增加,茎中Alphaproteobacteria纲的相对丰度显著增加,Clostridia纲的相对丰度显著减少;NHE东南景天叶片中Alphaproteobacteria纲、Gammaproteobacteria纲和Clostridia纲的相对丰度没有显著变化,茎中Negativicutes纲的相对丰度显著减少,根系中Betaproteobacteria纲和Clostridia纲的相对丰度显著减少,Negativicutes纲却显著增加。在高Cd~(2+)污染土壤(50mg/kg)上,HE东南景天叶片中Sphingomonas属和茎中Veillonella属的相对丰度均大于NHE,且HE东南景天根系内生细菌的第一、第二、第三优势菌Veillonella、Sphingomonas、Prevotella属细菌均没有出现在NHE东南景天根系。【结论】土壤Cd~(2+)污染水平对2种生态型东南景天叶、茎、根中的内生菌群落结构有显著影响。  相似文献   

11.
Mung bean seedlings inoculated with Enterobacter asburiae PSI3, a gluconic acid-producing rhizosphere isolate, enhanced plant growth in the presence of phytotoxic levels of Cd2+ in gnotobiotic pot experiments as compared to the uninoculated Cd-treated plants. Addition of organic acids to Cd-stressed seedlings promoted root elongation. Hematoxylin competition assays showed that organic acids could displace Cd2+ from the Cd2+: hematoxylin complex in the same order of effectiveness as was found for restoration of root net elongation viz. oxalate > malate > succinate while gluconate was effective at higher concentrations. Root associated Cd2+, assessed by hematoxylin staining of roots was found to be reduced when roots were treated with organic acid. Cd stress increased antioxidant enzymes such as peroxidase and superoxide dismutase in mung bean roots while organic acid treatment suppressed the up-regulation of these enzymes by Cd.  相似文献   

12.
Because of its prolific growth, oilseed rape (Brassica napus L.) can be grown advantageously for phytoremediation of the lands contaminated by industrial wastes. Therefore, toxic effect of cadmium on the germination of oilseed rape, the capability of plants for cadmium phytoextraction, and the effect of exogenous application of plant growth regulators to mitigate phytotoxicity of cadmium were investigated. For the lab study of seedlings at early stage, seeds were grown on filter papers soaked in different solutions of Cd2+ (0, 10, 50, 100, 200 and 400 μM). In greenhouse study, seedlings were grown in soil for 8 weeks, transferred to hydroponic pots for another 6 weeks growth, and then treated with plant growth regulators and cadmium. Four plant growth regulators viz. jasmonic acid (12.5 μM), abscisic acid (10 μM), gibberellin (50 μM) and salicylic acid (50 μM); and three levels of Cd2+ (0, 50 and 100 μM) were applied. Data indicated that lower concentration of Cd2+ (10 μM) promoted the root growth, whereas the severe stresses (200 or 400 μM) had negative effect on the establishment of germinating seedlings. Plants treated with any of the tested plant growth regulators alleviated cadmium toxicity symptoms, which were reflected by more fresh weight, less malondialdehyde concentration in leaves and lower antioxidant enzyme activities. The application of abscisic acid to the plants cultivated in the medium containing 100 μM Cd2+ resulted in significantly lower plant internal cadmium accumulation. Huabing Meng and Shujin Hua contributed equally to this paper.  相似文献   

13.
The plasmalemma vesicles isolated from cucumber and maize roots were used to study the effect of Cu2+ and Cd2+ on the hydrolytic and proton pumping activities of ATPase. In vivo application of metal ions to the plant growth solutions resulted in stimulation of the proton transport in maize. In cucumber roots the action of metals was not the same: cadmium stimulated the H+ transport through plasmalemma whereas Cu2+ almost completely inhibited it. Copper ions decreased the hydrolytic activity of H+-ATPase in cucumber, without any effect on this activity in membranes isolated from maize roots. The effect of cadmium on the hydrolytic activities was opposite: ATP-hydrolysis activity in plasmalemma was not altered in cucumber, whereas in maize its stimulation was observed. The amount of accumulated metals was not the main reason of different influence of metals on H+-ATPase activity in tested plants. In in vitro experiments Cu2+ inhibited H+ transport in the cucumber, to a higher degree than Cd2+ and both metals did not change this H+-ATPase activity of plasmalemma isolated from corn roots. Cu2+ added into the incubation medium reduced the hydrolytic activity of ATPase in the plasma membrane isolated from cucumber as well as from corn roots. Cd2+ diminished the hydrolytic activity of ATPase in cucumber, and no effect of Cd2+ in the plasmalemma isolated from corn roots was found. Our results indicated different in vitro and in vivo action of both metals on H+-ATPase and different response of this enzyme to Cu2+ and Cd2+ in maize and cucumber.  相似文献   

14.
Levels of Mg2+, Ca2+ and Fe2+/Fe3+ were determined in roots and shoots of sugar beet seedlings (Beta vulgaris L. cv. Monohill) cultured for 5 weeks in a complete nutrient solution to which either Cd2+ (0, 5 or 50 μM), EDTA (0, 10 or 100 μM) or a combination of both was added. The plants subjected to the various treatments showed a variety of deficiency symptoms. Leaves of the Cd2+-treated plants became thin and chlorotic (Mg- and Fe-deficiency symptoms). The plants showed reduced growth and developed only a few brownish roots with short laterals (Ca-deficiency symptoms). EDTA treatment resulted in green, stunted, hard leaves and reduced growth (Ca-deficiency symptoms). The deficiency symptoms observed correspond well with the observed uptake rates and distributions of Mg2+, Ca2+ and Fe2+/Fe3+. Increases in either Cd2+, EDTA or a combination of both in the growth medium, were correlated with increasing Mg2+ levels in the roots and with decreasing Mg2+ levels in the shoots. Cd2+ alone or in combination with EDTA had little influence on Ca2+ levels in the shoots but decreased Ca2+ levels in the roots. Thus, Cd2+ affects Mg2+ and Ca2+ transport in opposite ways: Mg2+ transport to the shoots is inhibited while that of Ca2+ is facilitated. Treatment with EDTA alone did not affect Ca2+ concentrations in either the shoots or the roots. Treatment with Cd2+ lowered Fe2+ concentrations in both roots and shoots.  相似文献   

15.
Two cadmium resistant mutants (Cd1 and Cd2) ofAspergillus niger, among the six isolated by mutagenization with N-methyl N’-nitro-N-nitrosoguanidine (MNNG) at pH 6.4 were selected for the study. Analysis of lipid composition of the mutants and the wildtype indicated that total lipid as well as individual lipids of the cadmium resistant mutants were changed as compared with that of the wildtype. The increased activities of metal-lothionein and reduced activities of D-xylose isomerase and L-phenylalanine ammonia lyase in cell free extract of the cadmium resistant mutants suggested that mutants could allow high concentration of cadmium salt as compared with that of the wildtype. The respiratory activity and intracellular as well as extracellular Cd2+ concentration of the mutants reflected the high tolerance of the Cd mutants to cadmium ion.  相似文献   

16.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants.  相似文献   

17.
Phragmites (Phragmites australis Cav. (Trin.) ex Steud) plants exposed to a high concentration of CdSO4 (50 μM) for 21 d were analysed with respect to the distribution of metal, its effects on antioxidants, the antioxidant enzymes and the redox status in leaves, roots and stolons. The highest accumulation of Cd2+ occurred in roots followed by leaves, and it was not significant in the stolons when compared with the control plants. In particular, in roots from Cd-treated plants, both the high amount of GSH and the parallel increase of glutathione-S-transferase (EC 2.5.1.18; GST) activity seemed to be associated with an induction of the detoxification processes in response to the high cadmium concentration. Superoxide dismutase (EC 1.15.1.1; SOD), ascorbate peroxidase (EC 1.11.1.11; APX), glutathione reductase (EC 1.6.4.2; GR) and catalase (EC 1.11.1.6; CAT) activities as well as reduced and oxidised glutathione contents in all samples of leaves, roots and stolons were increased in the presence of Cd2+ when compared to control plants. Despite the fact that Cd2+ has a redox characteristic not compatible with the Fenton-type chemistry that produces active oxygen species, the antioxidant response is widespread and generic. Increased activities of antioxidant enzymes in Cd-treated plants suggest that metal tolerance in Phragmites plants might be associated to the efficiency of these mechanisms.  相似文献   

18.
The bioaccumulation of cadmium by the white rot fungus Pleurotus sajor-caju onto dry biomass was investigated using aqueous media with concentrations in the range of 0.125 mM–1.0 mM The highest cadmium uptake (between 88.9 and 91.8%) was observed with aerobic fungal biomass from the exponential growth phase. Up to 1.0 mM cadmium gradually inhibited mycelium development, but never blocked it completely. Freeze-dried, oven-dried and non-metabolizing live Pleurotus sajor-caju biomass types were tested for their capacity to adsorb the test ion Cd2+ within the pH range of 4.5 to 6.0. Freeze–dried biomass proved to be the most efficient biomass type for Cd2+ metal adsorption. Therefore, Pleurotus sajor-caju may be used for heavy metal removal and bioremediation.  相似文献   

19.
Llamas  Andreu  Ullrich  Cornelia I.  Sanz  Amparo 《Plant and Soil》2000,219(1-2):21-28
Among other detrimental effects of the heavy metal Cd2+, a decrease in the plant content of essential mineral nutrients is known. In this study, the effect of Cd2+ on different physiological activities of rice roots involved in nutrient acquisition has been studied. Upon addition of 0.1 or 1 mM Cd2+ to the experimental solution, root cell membranes depolarized in few minutes, reaching very low Em values. This effect was transient and the initial membrane potential recovered totally within 6–8 h. Only the highest concentration used had an inhibitory effect on root respiration. Significant respiratory inhibition appeared after 2 h of exposure to Cd2+ and lasted for at least 4 h. In turn, membrane permeability increased in the presence of Cd2+ for at least 8 h, inducing K+ efflux from the roots. The relationship between these parameters and their possible involvement in lowered nutrient content in Cd2+-treated plants is discussed.  相似文献   

20.
Ironcadmium interactions are important in cadmium toxicity. Dietary iron supplements may decrease cadmium retention after oral cadmium exposure but the underlying mechanism is not known. Using a CdS/AgS ion selective electrode to measure [Cd2+] in physiological saline solution at pH 7.4, we show that Fe2+ promotes Cd2+ binding to citrate thereby decreasing the availability of free Cd2+. This suggests the formation of high molecular weight Cd2+Fe2+citrate complexes. We confirm this suggestion by showing that 109Cd2+ is retained by 1 kDa cut off filters when present with total 50 M Fe2+ plus 1 mM citrate but not when present with citrate alone. The formation of high molecular weight complexes may prevent Cd2+ absorption. As citrate is part of the diet, we suggest that these ironcadmium interactions may contribute to the protective effect of iron against cadmium toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号