首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Acanthocytic red blood cells in patients with abetalipoproteinemia have a decrease membrane fluidity that is associated with increased sphingomyelin/phosphatidylcholine (SM/PC) ratios. Here we describe studies designed to gain better insight into (i) the interrelationship between the composition of lipoprotein and red blood cell membrane in abetalipoproteinemia patients and normal controls; and (ii) how the differences in lipid composition of the red blood cell membrane affect its fluidity. The increased SM/PC ratio found in abetalipoproteinemia plasma high density lipoproteins (HDL) (3 times greater than controls) was paralleled by an increase in this ratio in acanthocytic red cells, but to a lesser degree (almost twice greater than control red cells). Cholesterol/phospholipid mole ratios (C/P) were increased 3-fold in abetalipoproteinemia HDL, but only slightly increased in red cells compared to controls values. As in the controls, 80-85% of abetalipoproteinemia red cell sphingomyelin was found to be in the outer half of the erythrocyte membrane. Membrane fluidity was defined in terms of microviscosity (eta) between 5 and 42 degrees C by the fluorescent polarization of 1,6-diphenylhexatriene (DPH) present in erythrocyte ghost membranes. At all temperatures, membrane microviscosity was higher in abetalipoproteinemia ghosts than controls, but these differences decreased at higher temperatures (12.34 vs 9.79 poise, respectively at 10 degrees C; 4.63 vs 4.04 poise at 37 degrees C). These differences were eliminated after oxidation of all membrane cholesterol to cholest-4-en-3-one by incubation with cholesterol oxidase. Following cholesterol oxidation, the membrane microviscosity decreased in patient ghosts more than in normal red blood cells so that at all temperatures no significant differences were present relative to control ghosts, in which the apparent microviscosity was also diminished but to a lesser degree. Therefore, although increased SM/PC ratios in abetalipoproteinemia may be responsible for decreased erythrocyte membrane fluidity, these effects are dependent upon normal interactions of cholesterol with red cell phospholipid.  相似文献   

2.
Acanthocytic red blood cells in patients with abetalipoproteinemia have a decreased membrane fluidity that is associated with increased sphingomyelin/phosphatidylcholine (SM/PC)§ ratios. Here we describe studies designed to gain better insight into (i) the interrelationship between the composition of lipoprotein and red blood cell membrane in abetalipo-proteinemia patients and normal controls; and (ii) how the differences in lipid composition of the red blood cell membrane affect its fluidity. The increased SM/PC ratio found in abetalipoproteinemia plasma high density lipoproteins (HDL) (3 times greater than controls) was paralleled by an increase in this ratio in acanthocytic red cells, but to a lesser degree (almost twice greater than control red cells). Cholesterol/phospholipid mole ratios (C/P) were increased 3-fold in abetalipoproteinemia HDL, but only slightly increased in red cells compared to controls values. As in the controls, 80–85% of abetalipo-proteinemia red cell sphingomyelin was found to be in the outer half of the erythrocyte membrane. Membrane fluidity was defined in terms of microviscosity ({ie116-1}) between 5 and 42°C by the fluorescent polarization of 1,6-diphenylhexatriene (DPH) present in erythrocyte ghost membranes. At all temperatures, membrane microviscosity was higher in abetalipoproteinemia ghosts than controls, but these differences decreased at higher temperatures (12.34 vs 9.79 poise, respectively, at 10°C; 4.63 vs 4.04 poise at 37°C). These differences were eliminated after oxidation of all membrane cholesterol to cholest-4-en-3-one by incubation with cholesterol oxidase. Following cholesterol oxidation, the membrane microviscosity decreased in patient ghosts more than in normal red blood cells so that at all temperatures no significant differences were present relative to control ghosts, in which the apparent microviscosity was also diminished but to a lesser degree. Therefore, although increased SM/PC ratios in abetalipoproteinemia may be responsible for decreased erythrocyte membrane fluidity, these effects are dependent upon normal interactions of cholesterol with red cell phospholipid.  相似文献   

3.
The degree of microviscosity, gh, (fluidity/rigidity behavior) of membrane lipids of normal and transformed mammalian fibroblasts obtained from mice, hamsters and rats was quantitatively monitored by fluorescence polarization, P, analysis of the fluorescent probe 1,6-diphenyl 1,3,5-hexatriene (DPH) when embedded in lipid regions of cellular membranes of intact viable cells. Analysis of membrane microviscosity of six different cell populations and of individual cells in each cell population have indicated that the membrane microviscosity of all cell types, both normal and transformed fibroblasts, changes as a function of the cell density in the growing cultures. The membrane microviscosity was found to be low (high lipid fluidity) in sparse conditions but high (high lipid rigidity) in dense conditions. The induced changes in membrane microviscosity are practically reversible for all cell types and a complete reversion can be obtained within a few hours after changing the cell density conditions from sparse to dense and vice versa.Comparative studies with normal and transformed fibroblasts have shown that transformed fibroblasts have a more rigid lipid layer in their cellular membranes than normal or untransformed fibroblasts. The difference in membrane microviscosity between transformed and normal fibroblasts is higher in confluent conditions as compared with subconfluent cultures. These differences in the degree of fluidity of membrane lipids that are controlled by possible differences in the cellto-cell contact in normal and transformed fibroblasts may play a major role in determining the growth behavior of normal and malignant cells that are growing as a solid tissue and may have a direct effect on the control mechanisms that determine the presence or absence of the “density dependent inhibition” of growth.  相似文献   

4.
Swine vascular smooth muscle cells were exposed to homologous low-density or high-density lipoprotein fractions for 24 h. Total cell membranes were isolated from the post-nuclear supernatant of the cell homogenates, fractionated by sucrose density gradient centrifugation and characterized by enzyme assays. The membrane fraction with the lowest density was enriched in plasma membrane marker enzymes. Cholesterol analysis showed that cells exposed to low-density lipoprotein had higher cholesterol-to-protein ratios in total cells, total cell membranes and individual membrane fractions than had the cells exposed to high-density lipoproteins. Cholesterol-to-phospholipid ratios of the plasma membrane-enriched fraction from cells exposed to low-density lipoprotein were higher than the same membrane fraction of cells exposed to high-density lipoprotein. Studies with iodinated lipoproteins showed that these compositional changes could not be due to lipoprotein contamination. Membrane microviscosity was determined by fluorescence depolarization with diphenylhexatriene and the microviscosity of the plasma membrane-enriched fraction was different in the cells exposed to the two different lipoprotein fractions. This difference in membrane microviscosity was significant only when the medium cholesterol content was 40 μg per ml or greater; cells exposed to low-density lipoprotein gave membranes with higher microviscosity.These results demonstrate that the properties of vascular smooth muscle cell membranes are influenced by exposure of the cells to homologous lipoprotein fractions.  相似文献   

5.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

6.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

7.
Purdy PH  Fox MH  Graham JK 《Cryobiology》2005,51(1):102-112
Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.  相似文献   

8.
The dependence of membrane dynamics on the mole ratio of lecithin to sphingomyelin (L/S) was examined by the fluorescence depolarization of the fluidity probe DPH in membranes isolated from sheep and human erythrocytes. In these membranes L/S is the main variable of lipid composition (0.02 and 1.7, respectively). The sheep erythrocyte membrane, which is rich in sphingomyelin, displays a higher lipid microviscosity than the human erythrocyte membrane in addition to a broad gel/liquid-crystal phase transition in the range of 26–35°C. Single-walled lipid vesicles of high sphingomyelin content, when studied by the same technique, exhibited dynamic characteristics similar to those found in the sheep erythrocyte membrane. Both the apparent microviscosity and the transition temperature decreased with increasing the L/S. Membrane proteins of human and sheep erythrocytes were fluorescently labeled with the sulfhydryl reagent N-dansylaziridine and the emission spectrum was recorded as a function of temperature. In the human erythrocyte membranes a gradual increase in the ratio of emission maxima at 520 and 490 nm was observed between 6 and 40°C. At this temperature range the ratio of the above emission maxima in sheep erythrocyte membranes displayed a break between 20 and 28°C, which partially overlapped the phase transition observed for the lipid core. The effect of the lipid phase transition on membrane proteins for the lipid core. The effect of the lipid phase transition on membrane proteins was further assessed by comparing the activity of the membrane bound phospholipase A2 in the intact and detergent-solubilized sheep erythrocyte membranes. Below 31°C the lipids suppress the enzyme activity by about 90%, whereas above this temperature this suppression is progressively abolished.  相似文献   

9.
Using a pyrene as a fluorescent probe, we investigated the influence of native and oxidized apolipoprotein A-I (apo A-I) and their complexes with tetrahydrocortisol (THC) on the microviscosity of the erythrocyte plasma membrane. The addition of THC to isolated membranes led to a 17% increase in the membrane microviscosity. In contrast, native apo A-I reduced the microviscosity (i.e., increased the fluidity) of the membranes by 15%. A more pronounced increase (by 25%) in the membrane fluidity was found in the presence of the complex of apo A-I with THC. Unlike native apo A-I, oxidized apo A-I and its complex with THC did not change the membrane viscosity. In view of the fact that apo A-I plays an important role in the binding of membrane cholesterol we suggest that the observed increase in the membrane fluidity under the influence of the native apo A-I is associated with the cholesterol efflux from plasma membrane. Oxidative modification of apo A-I likely disturbs the mechanisms of the cholesterol efflux and prevents the decrease in the membrane microviscosity.  相似文献   

10.
The thermotropic behaviour of membrane phospholipids was estimated in intact cells of Bacillus subtilis. Membrane fluidity (microviscosity) of intact cells depended markedly on the ambient temperature - increase in cultivation temperature led to an increase in membrane fluidity. Estimated as anisotropy of 1,6-diphenyl-1,3,5-hexatriene fluorescence, a 30% difference was observed when cells cultivated at 20 and 40 degrees C were compared. This lack of rigorous homeostatic control of bulk-phase lipid fluidity prompted the reevaluation of the physiological significance of the "homeoviscous adaptation" in B. subtilis.  相似文献   

11.
Microviscosity parameters and protein mobility in biological membranes.   总被引:33,自引:0,他引:33  
A fluorescence polarization technique with 1,6-diphenyl 1,3,5-hexatriene as a probe were employed to determine the microviscosity, n, in liposomes and biological membranes of different cholesterol to phospholipid mol ratio. From the temperature profile of n the flow activation energy, deltaE, and the unit flow volume, V, were derived. The increase of cholesterol/phospholipid ratio in liposomes is followed by a marked increase in n and a decrease in both deltaE and V. Liposomes of the same phospholipid composition as human erythrocyte membranes display in the extreme cases of cholesterol/phospholipid ratios 0 and 1.4 the values of n(25 degrees C) = 1.8 and 9.1 P, and deltaE = 15.0 and 6.5 kcal/mol, respectively. For most membranes studied the fluorescence polarization characteristics and the corresponding n values are similar to those obtained with these liposomes when the cholesterol/phospholipid level of the liposomes and the membranes were the same. However, unlike in liposomes deltaE of all membranes is in the narrow range of 6.5-8.5 kcal/mol, regardless of its cholesterol/phospholipid level. It is plausible that this is a general characteristic of biological membranes which originates from the vertical movement of membrane proteins to an equilibrium position which maintains constant deltaE and V values. This type of movement should affect the interrelation between lipid fluidity and protein mobility. Lipid microviscosity and the degree of rotational mobility of concanavalin A receptor sites in cell membranes were therefore determined. The examined cells were normal and malignant fibroblasts, as an example of cells that form solid tumours in vivo, and normal and malignant lymphocytes, as an example of cells that form ascites tumours in vivo. In both cell systems, opposite correlations between the lipid fluidity and the mobility of concanavalin A receptors were observed. In the fibroblasts the malignant cells possess a lower lipid fluidity but a higher receptor mobility, whereas in the lymphocytes the malignant cells possess a higher lipid fluidity but a lower receptor mobility. Thus, in these cell systems the degree of rotational mobility of concanavalin A receptors increases upon decreasing the lipid fluidity and decreases upon increasing the fluidity of the lipid core. This dynamic feature is in line with the above proposal according to which the concanavalin A receptor sites become more exposed to the aqueous surrounding upon increasing the microviscosity of the lipid layer and vice versa.  相似文献   

12.
Annexin A2 (AnxA2) is a phospholipid binding protein that has been implicated in many membrane-related cellular functions. AnxA2 is able to bind different acidic phospholipids such as phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PI2P). This binding is mediated by Ca(2+)-dependent and Ca(2+)-independent mechanisms. The specific functions of annexin A2 related to these two phospholipids and the molecular mechanisms involved in their interaction remain obscure. Herein we studied the influence of lipid composition on the Ca(2+)-dependency of AnxA2-mediated membrane bridging and on membrane fluidity. Membrane models of ten different lipid compositions and detergent-resistant membranes from two cellular sources were investigated. The results show that the AnxA2-mediated membrane bridging requires 3 to 50 times less calcium for PS-membranes than for PI2P-membranes. Membrane fluidity was measured by the ratiometric fluorescence parameter generalized polarization method with two fluorescent probes. Compared to controls containing low phospholipid ligand, AnxA2 was found to reduce the membrane fluidity of PI2P-membranes twice as much as the PS-membranes in the presence of calcium. On the contrary, at mild acidic pH in the absence of calcium AnxA2 reduces the fluidity of the PS-membranes more than the PI2P-membranes. The presence of cholesterol on the bilayer reduced the AnxA2 capacity to reduce membrane fluidity. The presented data shed light on the specific roles of PI2P, PS and cholesterol present on membranes related to the action of annexin A2 as a membrane bridging molecule during exocytosis and endocytosis events and as a plasma membrane domain phospholipid packing regulator.  相似文献   

13.
Anti-IgM or anti-IgD stimulates B cells to induce increases in inositol phospholipid metabolism and intracellular free calcium concentration [( Ca2+]i). Anti-IgM also causes increases in membrane fluidity that occur more promptly than those in [Ca2+]i in resting B cells as well as BAL17 B lymphoma cells. However, other B cell activators such as LPS or PMA did not induce the membrane fluidity changes. Furthermore, sodium fluoride, which is considered to be an activator of the guanine nucleotide-binding protein, caused increases in membrane fluidity as well as increased [Ca2+]i or inositol phospholipid metabolism. Anti-IgM- or sodium fluoride-induced increases in membrane fluidity were inhibited by 20-min pretreatment of cells with PMA, but not by 24-h pretreatment. These results indicate that membrane fluidity changes are closely associated with increased [Ca2+]i after cross-linkage of membrane Ig and are regulated by protein kinase C in B cells.  相似文献   

14.
The lipid microviscosity of microsomal membranes from senescing cut carnation (Dianthus caryophyllus L. cv. White Sim) flowers rises with advancing senescence. The increase in membrane microviscosity is initiated within 3 to 4 days of cutting the flowers and coincides temporally with petal-inrolling denoting the climacteric-like rise in ethylene production. Treatment of young cut flowers with aminoethoxyvinylglycine prevented the appearance of petal-inrolling and delayed the rise in membrane microviscosity until day 9 after cutting. When freshly cut flowers or aminoethoxyvinylglycine-treated flowers were exposed to exogenous ethylene (1 microliter per liter), the microviscosity of microsomal membranes rose sharply within 24 hours, and inrolling of petals was clearly evident. Thus, treatment with ethylene accelerates membrane rigidification. Silver thiosulphate, a potent anti-ethylene agent, delayed the rise in microsomal membrane microviscosity even when the flowers were exposed to exogenous ethylene. Membrane rigidification in both naturally senescing and ethylene-treated flowers was accompanied by an increased sterol:phospholipid ratio reflecting the selective loss of membrane phospholipid that accompanies senescence. The results collectively indicate that the climacteric-like surge in ethylene production during senescence of carnation flowers facilitates physical changes in membrane lipids that presumably lead to loss of membrane function.  相似文献   

15.
The partitioning of fluorescence probes into intracellular organelles poses a major problem when fluorescence methods are applied to evaluate the fluidity properties of cell plasma membranes with intact cells. This work describes a method for resolution of fluidity parameters of the plasma membrane in intact cells labelled with the fluorescence polarization probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The method is based on selective quenching, by nonradiative energy transfer, of the fluorescence emitted from the plasma membrane after tagging the cell with a suitable membrane impermeable electron acceptor. Such selective quenching is obtained by chemical binding of 2,4,6-trinitrobenzene sulfonate (TNBS), or by incorporation of N-bixinoyl glucosamine (BGA) to DPH-labelled cells. The procedures for determination of lipid fluidity in plasma membranes of intact cells by this method are simple and straightforward.  相似文献   

16.
Two steps were required for ATP-dependent endocytosis in resealed erythrocyte ghosts. The first step required incubation with Mg-ATP at 37 °C, while the second step required primaquine and occurred at 0 or at 37 °C. These two steps were apparently also required for ATP-dependent endocytosis in erythrocytes. Endocytosis in white ghosts was similar to that in resealed ghosts and erythrocytes; the main difference was that the requirement of primaquine for the second step was less strict in white ghosts; in them, appreciable endocytosis took place with no added primaquine. Nonetheless, endocytosis in all three types of cells was stimulated by primaquine. The fluidity of the membranes as sensed by spin-labeled phosphatidylcholine was measured with and without primaquine. The fluidity of erythrocytes was increased by addition of primaquine or by conversion of the erythrocytes to white ghosts; the effect primaquine had on the fluidity of white ghosts was not detectable by the spin label. This suggested that a fluidizing or loosening of the membrane structure was required for the second step of ATP-dependent endocytosis, and that this loosening could be accomplished either by primaquine or by the process of preparing white ghosts.  相似文献   

17.
In the present study, the in vitro effect of polyphenol rich plant extract, flavonoid--Pycnogenol (Pyc), on erythrocyte membrane fluidity was studied. Membrane fluidity was determined using 1-[4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), 1,6-diphenyl-1,3,5-hexatriene (DPH) and 12-(9-anthroyloxy) stearic acid (12-AS) fluorescence anisotropy. After Pyc action (50 microg/ml to 300 microg/ml), we observed decreases in the anisotropy values of TMA-DPH and DPH in a dose-dependent manner compared with the untreated erythrocyte membranes. Pyc significantly increased the membrane fluidity predominantly at the membrane surface. Further, we observed the protective effect of Pyc against lipid peroxidation, TBARP generation and oxidative hemolysis induced by H2O2. Pyc can reduce the lipid peroxidation and oxidative hemolysis either by quenching free radicals or by chelating metal ions, or by both. The exact mechanism(s) of the positive effect of Pyc is not known. We assume that Pyc efficacy to modify effectively some membrane dependent processes is related not only to the chemical action of Pyc but also to its ability to interact directly with cell membranes and/or penetrate the membrane thus inducing modification of the lipid bilayer and lipid-protein interactions.  相似文献   

18.
Oleoylanilide was administered orally to groups of rats according to different patterns. Oleoylanilide was perfused at different concentrations through rat liver. Oleoylanilide was added to isolated hepatocytes. Oleoylanilide was added to plasma-membrane preparations. Membrane preparations were obtained after experiments performed in vivo and perfusion experiments and, by using 1,6-diphenylhexa-1,3,5-triene as fluorescence probe, the fluorescence polarization parameter was measured, from which the microviscosity (eta) was calculated. In all cases the microviscosity decreased markedly. Addition of oleoylanilide to hepatocyte preparations and to isolated membranes produced the same effect, increasing the fluidity of the membranes. These data suggest that oleoylanilide partitions into the membrane, disordering some lipid interactions.  相似文献   

19.
According to "fluid-mosaic model," plasma membrane is a bilayer constituted by phospholipids which regulates the various cellular activities governed by many proteins and enzymes. Any chemical, biochemical, or physical factor has to interact with the bilayer in order to regulate the cellular metabolism where various physicochemical properties of membrane, i.e., polarization, fluidity, electrostatic potential, and phase state may get affected. In this study, we have observed the in vivo effects of a pro-carcinogen 1,2-dimethylhydrazine dihydrochloride (DMH) and the two non steroidal anti-inflammatory drugs (NSAIDs); sulindac and celecoxib on various properties of the plasma membrane of colonocytes, i.e., electric potential, fluidity, anisotropy, microviscosity, lateral diffusion, and phase state in the experimentally induced colorectal cancer. A number of fluorescence probes were utilized like membrane fluidity and anisotropy by 1,6-diphenyl-1,3,5-hexatriene, membrane microviscosity by Pyrene, membrane electric potential by merocyanine 540, lateral diffusion by N-NBD-PE, and phase state by Laurdan. It is observed that membrane phospholipids are less densely packed and therefore, the membrane is more fluid in case of carcinogenesis produced by DMH than control. But NSAIDs are effective in reverting back the membrane toward normal state when co-administered with DMH. The membrane becomes less fluid, composed of low electric potential phospholipids whose lateral diffusion is being prohibited and the membrane stays mostly in relative gel phase. It may be stated that sulindac and celecoxib, the two NSAIDs may exert their anti-neoplastic role in colorectal cancer via modifying the physicochemical properties of the membranes.  相似文献   

20.
Membrane fluidity was studied by electron-spin-resonance techniques in human En(a-) erythrocytes that lack the major membrane sialoglycoprotein, glycophorin A. By using stearic acid spin labels with a doxyl group in the C-12 or C-15 positions, we demonstrated that the hydrophobic core in these cells was more fluid than in normal cells. Surface-located regions in isolated En(a-) membranes, when probed with stearic acid labelled in the C-5 position, appeared more stable than in normal membranes. In isolated En(a-) membranes, protein motion was decreased when probed with a nitroxide derivative of maleimide. After incubation with anti-(glycophorin A) antibodies protein motion and membrane fluidity were increased in normal membranes. This effect was observed also after spectrin depletion, which by itself increased protein motion but decreased membrane fluidity in the hydrophobic core of the membrane. The results show that membrane proteins influence the fluidity of membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号