首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acanthocytic red blood cells in patients with abetalipoproteinemia have a decrease membrane fluidity that is associated with increased sphingomyelin/phosphatidylcholine (SM/PC) ratios. Here we describe studies designed to gain better insight into (i) the interrelationship between the composition of lipoprotein and red blood cell membrane in abetalipoproteinemia patients and normal controls; and (ii) how the differences in lipid composition of the red blood cell membrane affect its fluidity. The increased SM/PC ratio found in abetalipoproteinemia plasma high density lipoproteins (HDL) (3 times greater than controls) was paralleled by an increase in this ratio in acanthocytic red cells, but to a lesser degree (almost twice greater than control red cells). Cholesterol/phospholipid mole ratios (C/P) were increased 3-fold in abetalipoproteinemia HDL, but only slightly increased in red cells compared to controls values. As in the controls, 80-85% of abetalipoproteinemia red cell sphingomyelin was found to be in the outer half of the erythrocyte membrane. Membrane fluidity was defined in terms of microviscosity (eta) between 5 and 42 degrees C by the fluorescent polarization of 1,6-diphenylhexatriene (DPH) present in erythrocyte ghost membranes. At all temperatures, membrane microviscosity was higher in abetalipoproteinemia ghosts than controls, but these differences decreased at higher temperatures (12.34 vs 9.79 poise, respectively at 10 degrees C; 4.63 vs 4.04 poise at 37 degrees C). These differences were eliminated after oxidation of all membrane cholesterol to cholest-4-en-3-one by incubation with cholesterol oxidase. Following cholesterol oxidation, the membrane microviscosity decreased in patient ghosts more than in normal red blood cells so that at all temperatures no significant differences were present relative to control ghosts, in which the apparent microviscosity was also diminished but to a lesser degree. Therefore, although increased SM/PC ratios in abetalipoproteinemia may be responsible for decreased erythrocyte membrane fluidity, these effects are dependent upon normal interactions of cholesterol with red cell phospholipid.  相似文献   

2.
In a patient with lecithin: cholesterol acyltransferase deficiency, free cholesterol was markedly increased, and esterified cholesterol was diminished. In the patient's plasma, an increase in phosphatidylcholine (PC) and a decrease in sphingomyelin were observed. Concomitantly, an increase in a shorter acyl chain 16:0 was noted in PC, sphingomyelin and phosphatidylethanolamine (PE). In contrast to these results, longer chains such as 22:0 and 24:0 were decreased, especially in sphingomyelin. Unsaturated double bonds such as 18:1 was also increased in PC and PE. In the red-cell membrane lipids, the increase in free cholesterol was counteracted by an increase in PC and by a decrease in sphingomyelin and PE, reflecting changes in the patient's plasma lipids. Increased 16:0 (in PC) and decreased 18:0 and 24:0 were observed. The increased plasma free cholesterol due to metabolic defect (lecithin:cholesterol acyltransferase deficiency) led to decreased red-cell membrane fluidity. This effect appeared to be counteracted by changing phospholipid composition (increased PC and decreased sphingomyelin and PE), by increasing shorter chains (16:0), by decreasing longer chains (18:0 and 24:0) and by increasing unsaturated double bonds (18:2). These results can be interpreted as a self-adaptive modification of lecithin:cholesterol acyltransferase deficiency-induced red-cell membrane abnormalities, to maintain normal membrane fluidity. This speculation was supported by the ESR spin-label studies on the patient's membrane lipids. The normal order parameters in intact red cells and in total lipid liposomes were decreased if cholesterol-depleted membrane liposomes were prepared. Thus, the hardening effect of cholesterol appeared to be counteracted by the softening effects described above. Overall membrane fluidity in intact red cells of the lecithin:cholesterol acyltransferase-deficient patient was maintained normally, judged by order parameters in ESR spin-label studies.  相似文献   

3.
Anthryl-labeled fluorescent probes closely mimicking phosphatidylcholine and sphingomyelin were applied to study the state of these phospholipids in the rabbit erythrocyte membrane. At normal cholesterol levels both probes exhibited higher fluorescence polarization values in the membranes than in phospholipid vesicles of similar lipid composition, indicating a decreased fluidity of the probe environment in erythrocyte ghosts. In ghosts prepared from normal erythrocytes no evidence of lateral separation of phosphatidylcholine and sphingomyelin was found. At higher cholesterol levels, however, these lipids appear to segregate. Probably the effect of cholesterol on the erythrocyte membrane lipids involves lipid-protein interactions. At physiological concentrations, prostaglandin E1 only weakly affects the state of phosphatidylcholine and sphingomyelin in erythrocyte membranes. Cholesterol enrichment amplifies the effect of prostaglandin E1. Although the prostaglandin E1-induced changes depended much upon whether the ghosts were enriched with cholesterol in vitro or in vivo, with both types of ghosts effects of prostaglandin E1 were seen at extremely low effector concentrations that may have presented a few molecules of prostaglandin per ghost. The structural and functional significance of these findings is discussed.  相似文献   

4.
The purpose of this investigation was to correlate the viscoelastic properties and lipid fluidity of the red blood cell membrane to its lipid composition. The viscoelastic properties of human red cells that had been enriched or depleted in cholesterol were determined by the micropipette technique. The lipid fluidity of the outer and inner leaflets of the erythrocyte membrane was concurrently assessed by steady state fluorescence depolarization. The elastic modulus and the viscosity moduli of the erythrocyte membrane showed no significant differences between the cholesterol-modified and the control cells. Cholesterol enrichment decreased the lipid fluidity of the outer membrane leaflet alone, and cholesterol depletion increased the fluidity mainly of the inner leaflet.  相似文献   

5.
To better understand the effects of plasma membrane lipids and proteins and the cytoskeleton on the kinetics of cellular cholesterol efflux, the effects of (1), selectively depleting either sphingomyelin (SM) or phosphatidylcholine (PC); (2), cross-linking the cytoskeleton, and (3), removing certain cytoskeletal and integral membrane proteins on radiolabelled cholesterol efflux from red blood cells (RBC) have been studied. When RBC were treated with either phospholipase A2 or sphingomyelinase C to hydrolyze either 30-40% of the PC or 40-50% of the SM, respectively, the halftimes (t1/2) for cholesterol efflux to excess HDL3 were not significantly altered, with the values being 4.4 +/- 0.8 h or 3.7 +/- 0.4 h, respectively, compared to 4.6 +/- 0.6 h for control RBC. To investigate the effects of the cytoskeleton on the rate of free cholesterol (FC) desorption from the plasma membrane, the cytoskeletal proteins were cross-linked by either heat-treatment or exposure to diamide and cholesterol efflux from ghosts of these cells was measured. Cross-linking the cytoskeletal proteins by diamide treatment resulted in no significant change in t1/2 for treated (3.6 +/- 0.6 h) compared to control (4.2 +/- 0.4 h) ghosts: this suggests that the cytoskeleton does not play a large role in modulating cholesterol efflux. To investigate the effects of membrane proteins on cholesterol efflux, RBC microvesicles, containing mainly band 3 and 4 proteins and little of the cytoskeletal proteins, such as spectrin (bands 1,2) or actin (band 5), were obtained by incubation with the ionophore A23187. With excess HDL3 present, microvesicles exhibited a t1/2 of 4.2 +/- 1.9 h (compared to the t1/2 of 4.2 +/- 0.4 h for control ghosts). The results described in this paper suggest that neither changing the SM/PC ratio in the membrane nor cross-linking the cytoskeletal proteins nor removing the cytoskeleton changes the t1/2 for cholesterol efflux to excess HDL3. Presumably, the cholesterol-phospholipid interactions are insensitive to these perturbations in membrane structure.  相似文献   

6.
Undifferentiated Friend erythroleukemic cells (FL cells) acquire membrane microviscosity ( ), in accord with the culture cell density. At low cell density poise, whereas at confluency it increases to poise. Concomitantly, the total number of available transferrin receptors per cell decreases by about 80% upon increase in cell density. Modulation of membrane microviscosity, by artificial alteration of the membrane cholesterol level, mediates similar modulations of the availability of the transferrin receptors. The correlation between the availability of the transferrin receptors and the membrane lipid fluidity may take part in the overt decrease in iron uptake by erythroid cells along the erythropoiesis pathway.  相似文献   

7.
Sphingomyelin pathway has been linked with insulin signaling through insulin-dependent GLUT-4 glucose transporter, but a relationship between sphingomyelin and the GLUT-1 transporter responsible for the basal (insulin-independent) glucose transport has not been clearly established. As GLUT-1 is mainly distributed to the cell surface, we explored the effects of changes in membrane sphingomyelin content on glucose transport through GLUT-1. The addition of exogenous sphingomyelin or glutathione (an inhibitor of endogenous sphingomyelinase) to the culture medium increased membrane sphingomyelin and cholesterol contents. Basal glucose uptake was enhanced and positively correlated to sphingomyelin (SM), cholesterol (CL) and SM/CL ratio. The exposure of 3T3-L1 preadipocytes to sphingomyelinase (SMase) significantly increased basal glucose uptake, membrane fluidity and decreased membrane sphingomyelin and cholesterol contents 60 min after SMase addition. There was no significant change in the abundance of GLUT-1 at the cell surface. The membrane sphingomyelin and cholesterol contents, fluidity and basal glucose transport returned to baseline levels within 2 h. The basal glucose uptake was negatively correlated with cholesterol contents and positively with SM/CL ratio. The SM/CL ratio might represent an important parameter controlling basal glucose uptake and a mechanism by which insulin resistance might be induced.  相似文献   

8.
Scanning electron microscopic observation revealed that there were wide variations including typical acanthocytes in morphology of erythrocytes from a patient with abetalipoproteinemia. The erythrocyte membrane phospholipids and cholesterol contents from a patient was higher by 25% compared to an age-matched control subject. Analysis of phospholipid composition of red blood cells showed an increase of sphingomyelin (25.1----30.1%) with a concomitant decrease of lecithin (27.5----21.0%). Thus, the sphingomyelin/lecithin ratio was increased dramatically (0.91----1.43). As for fatty acyl chain composition of main phospholipids, an increased percentage of palmitic acid and docosahexaenoic acid and a decreased proportion of arachidonic acid and lignoceric acid were observed for sphingomyelin. There was an increment of palmitic acid which was accompanied with a decrease of linoleic acid in lecithin. On the other hand, no significant difference was shown in the fatty acid composition of phosphatidylethanolamine and phosphatidylserine plus phosphatidylinositol between a patient and control.  相似文献   

9.
The composition of red blood cell membrane and plasma phospholipids has been analyzed in patients with hyperlipidemias. In red cells of patients with elevated levels of triacylglycerol-rich lipoproteins, phosphatidylcholine (PC) was raised and sphingomyelin (SM) reduced, resulting in a 20% increase of the membrane PC/SM ratio. In plasma phospholipids of these patients PC and SM levels were also higher and lower, respectively and the plasma PC/SM ratio was elevated by more than 50%. Close positive correlations between plasma and membrane phospholipids were obtained for PC, SM and the PC/SM ratio in normolipidemic and hyperlipidemic donors. Plasmalogen phosphatidylethanolamine (PE), a supposed endogenous protector against lipid oxidation, was reduced by about 20% in red cell membrane lipids in hyperlipidemic patients. Also plasmalogen-PE in plasma tended to be reduced in hyperlipidemic donors. Plasma HDL levels were positively related to the content of plasmalogen PE in the red cell membrane. In conclusion, there are closely related increases in PC/SM ratios in plasma and the red cell membrane in patients with elevated levels of triacylglycerol-rich lipoproteins. It is speculated that decreases in red cell membrane plasmalogen-PE in hyperlipidemic patients could be related to impaired antioxidant protection, possibly as a consequence of reductions in plasma HDL levels.  相似文献   

10.
Erythrocytes from patients with familial lecithin:cholesterol acyltransferase (LCAT) deficiency have been shown to exhibit an increase in membrane fluidity which is surprisingly small in view of the extensive alterations both in membrane lipicl composition (namely, an elevation in cholesterol and phosphatidylcholine contents as well as a decrease in phosphatidylethanolamine) and in the functional properties of these cells. In the hope of deriving some information concerning the interrelationship between the structural and functional abnormalities, we have used the spin probe 5-doxyl stearic acid to investigate the temperature-dependent fluidity properties of red cells from two patients with a hereditary hemolytic syndrome (HHS) whose red cells are also characterized by qualitatively similar alterations in phosphatidylcholine and phosphatidylethanolamine but, unlike those in LCAT deficiency, have relatively normal levels of membrane cholesterol. A small increase in membrane fluidity of HHS erythrocytes equivalent to that previously observed in LCAT deficiency was found, indicating that membrane cholesterol level does not exert an important modulatory influence on membrane fluidity in these cells. It is concluded that while the distinct patterns of structural and functional erythrocyte alterations in these two disorders cannot be explained on the basis of differences in bulk membrane fluidity, the marginally increased fluidity may underlie the abnormalities in osmotic fragility and membrane p-nitrophenylphosphatase activity which are shared in common by both types of modified red cells.  相似文献   

11.
Generalized membrane lipid composition determinants of fluidity have been widely investigated, including phospholipid/cholesterol ratio and unsaturation index. Individual phospholipids differ in their physical characteristics, including their interaction with cholesterol and level of unsaturation, emphasizing the importance of examining their individual influence on membrane fluidity. Thus, the purpose of this study was to examine the dominant phospholipids of biological membranes (phosphatidylcholine, PC; phosphatidylethanolamine, PE; sphingomyelin, SM) through a meta-analysis to assess the validity of an inclusive phospholipid fluidity index (PFI = PC/(PE + SM)) as a determinant for membrane fluidity (expressed as polarization of fluorescent probe 1,6 diphenyl-1,3,5-hexatriene) in comparison to previous phospholipid ratios (PC/PE and PC/SM). The results demonstrate that all indices significantly predicted membrane fluidity at 25°C (based on 10–13 data points). In contrast, only PFI approached significance when predicting membrane fluidity at 37°C (P = 0.10 based on five points). As a result, PFI appears to be the only phospholipid index close to significantly predicting membrane fluidity at mammalian physiological temperature. Because this meta-analysis only assessed studies using mammalian membranes, future work should experimentally assess the validity of the PFI utilizing membranes from mammals and a variety of other species and tissues at their respective physiological temperatures.  相似文献   

12.
Cholesterol and phospholipid are the two major lipids of the red cell membrane. Cholesterol is insoluble in water but is solubilized by phospholipids both in membranes and in plasma lipoproteins. Morever, cholesterol exchanges between membranes and lipoproteins. An equilibrium partition is established based on the amount of cholesterol relative to phospholipid (C/PL) in these two compartments. Increases in the C/PL of red cell membranes have been studied under three conditions: First, spontaneous increases in vivo have been observed in the spur red cells of patients with severe liver disease; second, similar red cell changes in vivo have been induced by the administration of cholesterol-enriched diets to rodents and dogs; third, increases in membrane cholesterol have been induced in vitro by enriching the C/PL of the lipoprotein environment with cholesterol-phospholipid dispersions (liposomes) having a C/PL of >1.0. In each case, there is a close relationship between the C/PL of the plasma environment and the C/PL of the red cell membrane. In vivo, the C/PL mole ratio of red cell membranes ranges from a normal value of 0.9–1.0 to values which approach but do not reach 2.0. In vitro, this ratio approaches 3.0. Cholesterol enrichment of red cell membranes directly influences membrane lipid fluidity, as assessed by the rotational diffusion of hydrophobic fluorescent probes such as diphenyl hexatriene (DPH). A close correlation exists between increases in red cell membrane C/PL and decreases in membrane fluidity over the range of membrane C/PL from 1.0 to 2.0; however, little further change in fluidity occurs when membrane C/PL is increased to 2.0–3.0. Cholesterol enrichment of red cell membranes is associated with the transformation of cell contour to one which is redundant and folded, and this is associated with a decrease in red cell filterability in vitro. Circulation in vivo in the presence of the slpeen further modifies cell shape to a spiny, irregular (spur) form, and the survival of cholesterol-rich red cells is decreased in the presence of the spleen. Although active Na-K transport is not influenced by cholesterol enrichment of human red cells, several carrier-mediated transport pathways are inhibited. We have demonstrated this effect for the cotransport of Na + K and similar results have been obtained by others in studies of organic acid transport and the transport of small neutral molecules such as erythritol and glycerol. Thus, red cell membrane C/PL is sensitive to the C/PL of the plasma environment. Increasing membrane C/PL causes a decrease in membrane fluidity, and these changes are associated with a reduction in membrane permeability, a distortion of cell contour and filterability and a shortening of the survival of redcells in vivo.  相似文献   

13.
Undifferentiated Friend erythroleukemic cells (FL-cells) acquire membrane microviscosity (eta), in accord with the culture cell density. At low cell density eta (21 degrees) approximately 2.8 poise, whereas at confluency it increases to eta (21 degrees) approximately 5.3 poise. Concomitantly, the total number of available transferring receptors per cell decreases by about 80% upon increase in cell density. Modulation of membrane microviscosity, by artificial alteration of the membrane cholesterol level, mediates similar modulations of the availability of the transferrin receptors. The correlation between the availability of the transferring receptors and the membrane lipid fluidity may take part in the overt decrease in iron uptake by erythroid cells along the erythropoiesis pathway.  相似文献   

14.
The membrane fluidity of platelet and erythrocyte membranes in 10 Alzheimer's disease patients and 9 age-matched controls was studied. The platelet membranes of patients with Alzheimer's disease were found to be significantly more fluid than those of controls (p<0.02). However, erythrocyte membranes of Alzheimer patients were less fluid (more viscous) than those of controls (p<0.05). On further investigation of platelet and erythrocyte membranes obtained from healthy volunteers, the fluidity was found to change with increasing aluminium concentrations. When aluminium ammonium sulphate (0.01–10 M) was added to membrane suspensions, the fluidity of platelet membranes was increased, whereas the fluidity of erythrocyte membranes was decreased (i.e. the microviscosity was increased).  相似文献   

15.
Male rats were fed diets containing olive (OO) or evening primrose (EPO) oil (10% w/w), with or without added cholesterol (1% w/w). After 6-week feeding, the lipid and fatty acid compositions, fluidity, and fatty acid desaturating and cholesterol biosynthesis/esterification related enzymes of liver microsomes were determined. Both the OO and EPO diets, without added cholesterol, increased the contents of oleic and arachidonic acids, respectively, of rat liver microsomes. The results were consistent with the increases in delta 9 and delta 6 desaturation of n-6 essential fatty acids and the lower microviscosity in the EPO group. Dietary cholesterol led to an increase in the cholesterol content of liver microsomes as well as that of phosphatidylcholine (PC). The cholesterol/phospholipid and PC/PE (phosphatidylethanolamine) ratios were also elevated. Fatty acid composition changes were expressed as the accumulation of monounsaturated fatty acids, with accompanying milder depletion of saturated fatty acids in rat liver microsomes. In addition, the arachidonic acid content was lowered, with a concomitant increase in linoleic acid, which led to a significant decrease in the 20:4/18:2 ratio in comparison to in animals fed the cholesterol-free diets. Cholesterol feeding also increased delta 9 desaturase activity as well as membrane microviscosity, whereas it decreased delta 6 and delta 5 desaturase activities. There was a very strong correlation between fluidity and the unsaturation index reduction in the membrane. Furthermore, the activity of hydroxymethylglutaryl-CoA reductase increased and the activity of acyl-CoA:cholesterol acyltransferase decreased in liver microsomes from both cholesterol-fed groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
This study elucidates the factors underlying the enhancement in efflux of human fibroblast unesterified cholesterol and phospholipid (PL) by lipid-free apolipoprotein (apo) A-I that is induced by cholesterol enrichment of the cells. Doubling the unesterified cholesterol content of the plasma membrane by incubation for 24 h with low density lipoprotein and lipid/cholesterol dispersions increases the pools of PL and cholesterol available for removal by apoA-I from about 0.8-5%; the initial rates of mass release of cholesterol and PL are both increased about 6-fold. Expression of the ATP binding cassette transporter A1 (ABCA1) is critical for this increased efflux of lipids, and cholesterol loading of the fibroblasts over 24 h increases ABCA1 mRNA about 12-fold. The presence of more ABCA1 and cholesterol in the plasma membrane results in a 2-fold increase in the level of specific binding of apoA-I to the cells with no change in binding affinity. Characterization of the species released from either control or cholesterol-enriched cells indicates that the plasma membrane domains from which lipids are removed are cholesterol-enriched with respect to the average plasma membrane composition. Cholesterol enrichment of fibroblasts also affects PL synthesis, and this leads to enhanced release of phosphatidylcholine (PC) relative to sphingomyelin (SM); the ratios of PC to SM solubilized from control and cholesterol-enriched fibroblasts are approximately 2/1 and 5/1, respectively. Biosynthesis of PC is critical for this preferential release of PC and the enhanced cholesterol efflux because inhibition of PC synthesis by choline depletion reduces cholesterol efflux from cholesterol-enriched cells. Overall, it is clear that enrichment of fibroblasts with unesterified cholesterol enhances efflux of cholesterol and PL to apoA-I because of three effects, 1) increased PC biosynthesis, 2) increased PC transport via ABCA1, and 3) increased cholesterol in the plasma membrane.  相似文献   

17.
Summary— Morphological study of red blood cell phagocytosis by Entamoeba histolytica-like (Laredo strain) has shown that this amoeba is able to ingest by two distinct mechanisms. One is classical phagocytosis and the other is by suction or microphagocytosis. Rigidification of red blood cells by treatment with glutaraldehyde shows that there is a correlation between the deformability of the ingested cell and the type of phagocytosis observed. Indeed, as the red cells become more rigid, less microphagocytosis is observed. To demonstrate that this shift in phagocytic mechanisms is not induced by the modification of a surface receptor by the glutaraldehyde treatment, the amoebas were fed with erythrocyte ghosts. Since these have lost most of their hemoglobin content, they are less rigid than the intact erythrocytes. The ghosts, even after glutaraldehyde treatment, are always ingested by microphagocytosis. These results have therefore led us to conclude that the type of erythrocyte phagocytosis used by E histolytica-like (Laredo strain) is determined by the deformability of the targetted red blood cells.  相似文献   

18.
The measurements of the fluorescence polarization of perylene embedded in erythrocyte membranes were carried out with normal and reticulocyte-rich blood, and the microviscosity of erythrocyte membranes was calculated from the polarization degree. In intact cells, reticulocyte membranes had a significantly lower microviscosity than normal erythrocyte membranes, while in ghosts no significant difference in membrane microviscosity was observed between reticulocytes and mature erythrocytes.  相似文献   

19.
GRSL lymphoma cells were isolated from various growth sites in the host. The relative membrane lipid fluidities of these cells and of normal lymphoid cells were estimated by fluorescence polarization, using the probe diphenylhexatriene and by measuring the (free) cholesterol/phospholipid molar ratio in whole cells. The results indicate that the membrane fluidity (reciprocal of the lipid structural order) of the lymphoma cells increases in the order of their location: peripheral blood < spleen < mesenterial lymph node < ascites fluid. The membrane fluidities of normal lymphocytes from thymus, mesenterial lymph node and spleen were about the same, but higher than of peripheral blood lymphocytes, and between those of the lymphoma cells from lymph node and spleen. These results are confirmed by more extensive analysis on purified plasma membranes from the splenic and ascitic GRSL lymphoma cells and from normal splenocytes and thymocytes. The significantly higher lipid order parameter found in the GRSL plasma membrane isolated from the spleen as compared to those from the ascites cells could be fully explained by the differences measured in the major chemical determinants of the fluidity, i.e., the cholesterol/phospholipid ratio, the sphingomyelin content and the degree of saturation of the fatty acyl groups of the phospholipids. It was also found that the cholesterol/phospholipid ratio in erythrocyte membranes isolated from the peripheral blood of the tumor bearers was higher than in those from normal control mice. The observed differences in membrane fluidity between distinct subsets of tumor cells may be relevant to the sensitivity of these cells to immune attack or to drugs.  相似文献   

20.
Using a pyrene as a fluorescent probe, we investigated the influence of native and oxidized apolipoprotein A-I (apo A-I) and their complexes with tetrahydrocortisol (THC) on the microviscosity of the erythrocyte plasma membrane. The addition of THC to isolated membranes led to a 17% increase in the membrane microviscosity. In contrast, native apo A-I reduced the microviscosity (i.e., increased the fluidity) of the membranes by 15%. A more pronounced increase (by 25%) in the membrane fluidity was found in the presence of the complex of apo A-I with THC. Unlike native apo A-I, oxidized apo A-I and its complex with THC did not change the membrane viscosity. In view of the fact that apo A-I plays an important role in the binding of membrane cholesterol we suggest that the observed increase in the membrane fluidity under the influence of the native apo A-I is associated with the cholesterol efflux from plasma membrane. Oxidative modification of apo A-I likely disturbs the mechanisms of the cholesterol efflux and prevents the decrease in the membrane microviscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号