首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Mature embryos of Amaranthus hypochondriacus (amaranth) were used to develop an in vitro culture system for plant regeneration and genetic transformation. Plants were regenerated from embryo-derived callus cultivated on Murashige and Skoog medium supplemented with 10 μM 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-2-methoxybenzoic acid and 10% coconut liquid endosperm. Transgenic plants were obtained by inoculation of mature embryo explants with a disarmed Agrobacterium strain containing the plasmid pGV2260(pEsc4), which carried the genes encoding neomycin phosphotransferase type II and β-glucuronidase. The presence of transgenes in the genome of transformed amaranth plants and their progeny was demonstrated by Southern blot hybridization. Tissue specific and light-inducible expression directed by a pea chlorophyll a/b-binding protein promoter was observed in transgenic amaranth plants and their progeny. Received: 30 December 1996 / Revision received: 14 May 1997 / Accepted: 3 June 1997  相似文献   

2.
Complementary sense promoter from cotton leaf curl virus (CLCuV) is a novel plant promoter for genetic engineering that could drive high-level foreign gene expression in plant. To determine the optimal promoter sequence for gene expression, CLCuV promoter was deleted from its 5' end to form promoter fragments with five different lengths, and chimeric gus genes were constructed using the promoterdeletion. These vectors were delivered into Agrobacterium and tobacco (Nicotiana tabacum L cv. Xanthi) plants which were transformed by leaf discs method. GUS activity of transgenic plants was measured. The results showed that GUS activities with the promoter deleted to -287 and -271 from the translation initiation site were respectively about five and three times that of full-length promoter. There exists a c/s-element which is important for the expressing activity in phloem from -271 to -176. Deletion from -176 to -141 resulted in a 20-30-fold reduction in GUS activity in leaves with weak activity in leaves and  相似文献   

3.
The effect of 6-benzylaminopurine (6-BA) alone or in combination with naphthaleneacetic acid or indoleacetic acid on the morphogenetic response of cotyledon explants of Citrullus colocynthis (L.) Schrad. was tested. The best results were obtained with a medium containing 25 μm 6-BA, which yielded organogenic calli at a frequency of 81.8%. When these organogenic calli were transferred to elongation medium (basal medium supplemented with 0.5 μm 6-BA), 80% produced well-developed shoots. These shoots rooted normally when cultured on rooting medium containing indolebutyric acid at 2.5 or 5.0 μm. Plants grew to maturity under greenhouse conditions and gave normal fruits. Cotyledon explants were transformed by cocultivation with Agrobacterium tumefaciens LBA4404 carrying the binary vector pBI121 which bears the reporter gene β-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII). Transformants were selected for growth capacity on medium with 100 mgl–1 of kanamycin. On the basis of β-glucuronidase expression, the transformation frequency was 14.2%. Molecular characterization by polymerase chain reaction confirmed the presence of the two genes transferred (gus, nptII) in the transgenic plants. Sexual transmission of both genes was also confirmed by studying their expression in progenies from several transgenic plants. Received: 9 May 1996 / Revision received: 3 December 1996 / Accepted: 20 January 1997  相似文献   

4.
Young leaf tissue of orchardgrass (Dactylis glomerata L.) was placed on Schenk and Hildebrandt medium containing 30 μM dicamba. Microprojectiles coated with DNA containing the selectable bar gene (Basta? tolerance) and the reporter gene uidA coding for β-glucuronidase (GUS), both driven by the maize ubiquitin promoter (Ubi1), were propelled into the tissue with a particle inflow gun. Transient GUS expression was observed as blue spots of various sizes on leaf segments. Somatic embryos staining entirely blue were also produced, and embryos germinated on medium containing 3.0 mg 1–1 bialaphos. Leaves of 67 putative transformed plants were painted with 0.1% Basta. Ten showed no reaction, and 6 showed only a localized response. Cultured leaf segments from tolerant plants also produced somatic embryos that expressed GUS. The genetic transformation was confirmed by Southern blot hybridization and PCR analyses of T0 plants and by PCR analyses of somatic embryos produced from T0 plants. Received: 9 April 1997 / Revision received: 11 May 1997 / Accepted: 3 June 1997  相似文献   

5.
Summary Five parameters were examined for their effect on transformation ofDendrobium tissues by microprojectile bombardment. The superpromoter in pBI426 produced at least 1.5 times as many transient transformants as the single cauliflower mosaic virus 35S promoter in pBI121 (37 to 69% vs. 0 to 44%) with dark and frequent GUS (β-glucuronidase) staining. Tissue, genotype, and type of microparticle significantly affected transient GUS activity. Higher expression was seen in protocormlike bodies and in hybrid UH44 compared to etiolated shoots and protocorms and to hybrids M61 and K1329-39. Microparticles of 1.6-μm Bio-Rad gold were more effective than 1.0-μm ASI gold. Transient GUS activity did not differ among protocormlike bodies bombarded using helium propellant pressures of 650, 900, or 1100 psi. Transgenic plants were recovered fromDendrobium UH800 protocormlike bodies bombarded with pBI426-coated, 1.1-μm tungsten particles using an early-model gunpowder-driven apparatus with an estimated stable transformation rate of 11.7%. One transgenic plant ofDendrobium UH44 was recovered from etiolated shoot explants bombarded with pBI121-coated, 1.1-μm tungsten particles using the Dupont PDS-1000 with a stable transformation rate of 0.17%. Positive selection results showed 100 to 200 mg·liter−1 kanamycin to be appropriate for regeneration of transgenic plants from protocormlike bodies, protocorms, and etiolated shoot explants over a 3- to 9.5-mo. period.  相似文献   

6.
A two-step protocol for the induction of shoots from Alstroemeria leaf explants has been developed. Leaf explants with stem node tissue attached were incubated on shoot induction medium for 10 days, and then transferred to regeneration medium. Shoots from the area adjacent to the region between the leaf base and node tissue regenerated within 3 weeks after transfer to the regeneration medium, without a callus phase. The best induction was obtained with Murashige and Skoog medium containing 10 μm thidiazuron and 0.5 μm indole butyric acid. The regeneration medium contained 2.2 μm 6-benzylaminopurine. After several subcultures of the leaf explants with induced shoots, normal plantlets with rhizome were formed. In Alstroemeria, the percentage of responding leaf explants is more important than the number of shoots regenerated per leaf explant, because rhizome formation is the most important factor for micropropagation. The effect of other compounds in the induction medium, including glucose, sucrose, silver nitrate, and ancymidol, on regeneration was also investigated. Received: 14 June 1996 / Revision received: 27 September 1996 / Accepted: 20 October 1996  相似文献   

7.
Summary Transgenic sorghum plants (Sorghum bicolor L. Moench, cv. SRN39) were obtained by microprojectile-mediated DNA delivery (Bio-Rad PDS 1000/He Biolistic Delivery System) to explants derived from immature inflorescences. Explants were precultured on medium supplemented with 2.5 mg/l (11.31 μM) 2,4-D, 0.5 mg/l (2.32 μM) kinetin, and 60 g/l sucrose for 1 to 2 wk prior to bombardment. Bialaphos selectron pressure was imposed 2 wk after bombardment and maintained throughout all the culture stages leading to plant regeneration. More than 2500 explants from 1.5 to 3.0 cm inflorescences were bombarded and subjected to bialaphos selection. Out of more than 190 regenerated plants, 5 were determined to be Ignite resistant. Southern analyses confirmed the likelihood that the 5 herbicide resistant plants derived from two independent transformation events. The phosphinothricin acetyltransferase gene (bar) was inherited by and functionally expressed in T1 progeny. However, no β-glucuronidase (GUS) activity could be detected in T1 plants that contained uidA restriction fragments. Histological analyses indicated that in the absence of bialaphos morphogenesis was primarily via embryogenesis while organogenesis was more predominant in callus maintained with herbicide selection.  相似文献   

8.
A reliable plant regeneration system is described for the production of adventitious shoots from root explants of spinach. Explants from roots of axenic shoots and roots induced on cultured hypocotyl explants were used for adventitious shoot induction. Explants from apical, middle and basal root regions were incubated on Nitsch and Nitsch medium supplemented with α-naphthaleneacetic acid, gibberellic acid and kinetin. Optimum shoot regeneration was from explants of apical and middle root regions on medium with 20 μm α-naphthaleneacetic acid and 5.0 μm gibberellic acid. Shoots originated directly from root tissues without an intervening callus phase. Adventitious shoots were rooted and were grown to maturity in the glasshouse. This plant regeneration procedure has been exploited in preliminary studies of Agrobacterium-mediated transformation. Received: 27 February 1996 / Revision received: 22 August 1996 / Accepted: 30 September 1996  相似文献   

9.
Rapid in-vitro plant regeneration of cotton (Gossypium hirsutum L.)   总被引:5,自引:0,他引:5  
A rapid, clonal propagation procedure has been developed to regenerate mature cotton (Gossypium hirsutum L.) plants from pre-existing meristems that were excised from in-vitro-grown tissues. This plant regeneration procedure was applicable to diverse cotton germplasms and required specific concentrations of 6-benzylaminopurine (BA) depending on the origin of the meristems. All shoots regenerated directly without a callus phase. Screening BA concentrations (0.0–10.0 μm) demonstrated that shoot meristems (apices), secondary leaf nodes, primary leaf nodes, and cotyledonary nodes derived from in-vitro-grown 28-day-old seedlings (Paymaster HS26) varied in their ability to form elongated shoots depending on the level of BA. Indicative of a germplasm-independent procedure, a BA concentration screen (0.0, 0.3, 1.0 μm) demonstrated that explants with pre-existing meristems, excised from diverse germlines, were also able to form elongated shoots at 0.3 μm BA. In most cases, elongated shoots derived from this procedure were rooted by a two-step process: an in-vitro maturation step (Murashige and Skoog medium-activated charcoal) followed by planting into soil after basal application of Rootone. This BA plant regeneration procedure was rapid, reproducible, and highly efficient for Stoneville 7A, Paymaster HS26, and other high-fiber-yielding germlines. Regenerated plants were phenotypically normal and all of the mature plants regenerated to date have initiated flowers and set viable R1 seeds. Received: 15 March 1997 / Revision received: 28 August 1997 / Accepted: 5 September 1997  相似文献   

10.
The role of ethylene in shoot regeneration was investigated using transgenic Cucumis melo plants expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene. ACC oxidase catalyses the last step of ethylene biosynthesis. Leaf and cotyledon explants from the transgenic plants exhibited low ACC oxidase activity and ethylene production, whereas the regeneration capacity of the tissues was greatly enhanced (3.5- and 2.8-fold, respectively) compared to untransformed control tissues. Addition of ethylene released by 50 or 100 μm 2-chloroethylphosphonic acid dramatically reduced the shoot regeneration rate of the transgenic tissues. The results clearly demonstrate that ethylene plays an important role in C. melo morphogenesis in vitro. Received: 23 April 1997 / Revision received: 9 June 1997 / Accepted: 2 July 1997  相似文献   

11.
We adapted a previously described Agrobacterium-mediated transient expression system to test the expression level of three constructs carrying the surface antigen 1 (SAG1) of Toxoplasma gondii. Two constructs were based in a Potato virus X (PVX) amplicon. In one of them, the PVX movement protein genes were replaced by the sag1 gene. In the other, the sag1 gene was placed under the control of an additional coat protein subgenomic promoter. In the third construct, the sag1 gene was fused to an apoplastic peptide signal under the CaMV 35S promoter. Western blot analysis of leaf extracts infiltrated with each construct revealed a protein of 35 kDa. SAG1 accumulation in leaves ranged from 0.1 to 0.06% of total soluble protein (equivalent to 10 μg and 6 μg of SAG1 per gram of fresh leaf tissue, respectively). Three of five human seropositive samples reacted with tobacco-expressed SAG1 in Western blot analysis. The C3H mice were immunized with SAG-expressing leaf extracts and perorally challenged with a nonlethal dose of the T. gondii Me49 strain. Mice vaccinated with SAG1 showed significantly lower brain cyst burdens compared to those from the control group. Immunization with SAG1-expressing leaves elicited a specific humoral response with predominant participation of type IgG2a. In conclusion, a functional SAG1 version could be transiently expressed in tobacco leaves.  相似文献   

12.
13.
A rapid and reliable micropropagation method was established for Spathoglottis plicata. Nodal and leaf explants dissected from 8-month-old pot-grown seedlings were cultured on charcoal-amended Murashige and Skoog medium supplemented with 16 combinations of α-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BA) at concentrations of 0.54–10.74 μm. Regeneration of protocorm-like bodies (PLBs) and subsequent plantlet development were observed from 98.5% of the nodal explants. Only 6.5% of leaf explants and occasionally some root segments (dissected from regenerated plantlets) were able to produce PLBs and then plantlets. The optimum plant growth regulator (PGR) combination for maximal PLB regeneration was 5.37 μm NAA and 0.44 μm BA. The best combination of PGR for plantlet development was 2.69–10.74 μm NAA and 8.88 μm BA. The NAA to BA ratios for maximal PLB induction and plantlet development were 12.2 and 0.3–1.2, respectively. Regenerated PLBs and plantlets, when cut into pieces of less than 1 mm and subcultured onto the above media, regenerated new PLBs and plantlets in another 3 months. Received: 20 February 1997 / Revision received: 27 May 1997 / Accepted: 16 June 1997  相似文献   

14.
Shoot bud regeneration from Petunia leaf disks was inhibited when they were cultured with the demethylating agents, 5-azacytidine (AzaC) and 5-aza-2′-deoxycytidine (AzadC), in shoot induction (SI) medium. Explants induced shoot primordia if they were transferred after 1 week from the medium containing the drugs to medium without drugs. The fresh weight of leaf disks cultured on SI medium for 2 weeks in the presence of the drugs was 60–80% lower when compared to control shoot-forming cultures. Internode length was reduced when shoots were transferred to phytohormone-free Murashige and Skoog medium containing the drugs. However, no other morphological abnormalities were seen in these shoots, even at 20 μm AzaC or 5 μm AzadC. Coupled restriction enzyme digestion (with HpaII and MspI) and random amplification of genomic DNA was performed to detect the level of methylation of CCGG sites in the DNA of the explants exposed to AzaC and AzadC. Over 15 amplified bands were detectable in the control. Five of these bands were absent in the amplified products when digested DNA from the drug-treated explants was used as the template, showing that hypomethylation of DNA had occurred. This suggests that inhibition of shoot bud formation in the presence of the drugs AzaC and AzadC may be due to the altered methylation status. Received: 7 January 1997 / Revision received: 17 February 1997 / Accepted: 1 March 1997  相似文献   

15.
Summary A sweetgum (Liquidambar styraciflua) nodule culture system was developed and integrated with genetic transformation by microprojectile bombardment. Nodule cultures were established from seedling hypocotyls and proliferated in liquid medium containing 0.1 mg (0.45 μM) thidiazuron (TDZ) per 1 and 0.01 mg (0.045 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) per 1. Shoots differentiated from the nodules in liquid media containing (per 1) 1 mg (4.4 μM) benzyladenine (BA), 0.5 mg (2.2 μM) BA, and 0.01 mg (0.054 μM) naphthaleneacetic acid (NAA), or 0.5 mg BA, 0.01 mg NAA, and 0.05 mg (0.23 μM) TDZ under the light. Differentiating shoots required 4 wk of dark treatment for further development on semisolid medium containing 1 mg BA per 1. Elongated shoots were harvested and the basal ends were soaked in a solution containing 10 mg (49.2 μM) indole-3-butyric acid (IBA) per 1 before being planted in potting mix for ex vitro rooting. Roots formed and leaves expanded in 2 wk. Sweetgum nodules were stably transformed by microprojectile bombardment with a 7.4-kb plasmid, pTRA 140, harboring CaMV 35S-HPH and CaMV 35S-GUS. Evidence that nodules growing in the presence of hygromycin B were stably transformed was provided by polymerase chain reaction analysis and β-glucuronidase activity. Sweetgum shoots differentiated in liquid medium in the presence of hygromycin B. Shoots transferred to solid medium lacking hygromycin B elongated and displayed β-glucuronidase activity in their expanding leaves and stems. Southern analysis confirmed the presence of the GUS gene in nodules and shoots. Transgenic shoots initiated roots and showed leaf expansion 2 wk after being planted in potting mix.  相似文献   

16.
He YK  Xue WX  Sun YD  Yu XH  Liu PL 《Cell research》2000,10(2):151-160
The experiment was performed to evaluate the progenies of plant lines transgenic for auxin synthesis genes derived from Ri T-DNA.Four lines of the transgenic plants were self-crossed and the foreign auxin genes in plants of T5 generation were confirmed by Southern hybridization.Two lines,D1232 and D1653,showed earlier folding of expanding leaves than untransformed line and therefore had early initiation of leafy head.Leaf cuttings derived from plant of transgenic line D1653 produced more adventitious roots than the control whereas the cuttings from folding leaves had much more roots than rosette leaves at folding stage,and the cuttings from head leaves had more roots than rosette leaves at heading stage.It is demonstrated that early folding of transgenic leaf may be caused by the relatively higher concentration of auxin.These plant lines with auxin transgenes can be used for the study of hormonal regulation in differentiation and development of plant orgens and for the breeding of new variety with rapid growth trait.  相似文献   

17.
Summary Transgenic soybean can be efficiently produced by particle bombardment of embryogenic suspension culture material. Unfortunately, the time required to obtain a transformation-competent soybean suspension culture line is often lengthy and can result in reduced fertility of regenerated plants. In addition, establishment and maintenance of embryogenic suspension cultures can be very difficult. The objective of this work was to minimize the time required to obtain transformation-competent embryogenic tissue and optimize DNA delivery into that tissue. Somatic embryos were induced from immature cotyledons of soybean [Glycine max (L.) Merrill cv ‘Jack’] by placement of cotyledons, adaxial side up, on a MS-based induction medium containing 40 mg (181 μM) 2,4-dichlorophenoxyacetic acid (2,4-D) per 1 and 6% sucrose. Embryogenic tissues, which formed from the surface of the cotyledons within 2–4 wk, were transferred to an embryo proliferation medium containing 20 mg (90 μM) 2,4-D per 1 and 3% sucrose. After 4 wk, proliferative embryogenic tissue could be used for transformation via particle bombardment. Desiccation of target tissue, period of subculture prior to bombardment, and the number of bombardments per target tissue were evaluated for enhancement of transient β-glucuronidase (GUS) expression. The highest number of blue foci was observed when the target tissue was desiccated for 10 min in an uncovered Petri plate containing proliferation medium, subcultured on the same day of bombardment, and bombarded three times on a single day. For stable transformation, selection was started 20 d after bombardment using 9 mg hygromycin per 1 for 4 wk, and 18 mg per 1 thereafter. Stably transformed clones were obtained from tissue bombarded once and twice on a single day. GUS assays and Southern hybridization analysis of DNA from putative clones confirmed stable integration of the introduced genes. Fertile transgenic plants were obtained in 11–12 mo following culture initiation.  相似文献   

18.
Presence of potyvirus in single garlic (Allium sativum L.) cloves from the same bulb, and in five single leaves excised from commercial field-grown individual plants was studied using ELISA. It was found that the viruses were not present in all organs of the same plant, since some cloves of the same bulb were infected with potyvirus but some others were potyvirus-free. Analyzed leaves from a given plant also exhibited irregular distribution of potyvirus. This study also aimed to obtain potyvirus-free plants from two commercial garlic cultivars (Taiwan and Chileno) using cloves subjected to thermotherapy, chemotherapy or meristematic dissection followed by in vitro culture. Thermotherapy (sequential treatment at 32°C for a week, 36°C for 2 weeks, and 38°C for 3 weeks) was found to affect survival of explants and 36.5% cloves from Taiwan and 26.8% from Chileno cultivars were recovered after the treatment. ELISA tests showed that 63% of the cloves of Taiwan that survived the treatment and 70.9% of Chileno explants were potyvirus-negative. Regarding chemotherapy (205 μM Ribavirin solution), the explants (cloves) survived, but only an average of 27.0–34.8% were negative for the presence of potyvirus. When meristematic dissection was applied, an average of 41.7% explants of Taiwan and 34.2% of Chileno survived the treatment, and approximately 64% of these explants from both cultivars were potyvirus-negative. Potyvirus-free garlic plants grown in field conditions showed longer stems with a major fresh and dry weight per bulb, and also exhibited a higher yield than non-treated plants.  相似文献   

19.
Summary Rapid regeneration of multiple shoots ofPaulownia fortunei was obtained from the petiolar ends of leaf explants from in vitro grown shoots. The optimal shoot-inducing treatment was Murashige-Skoog medium supplemented with 4μM naphthaleneacetic acid and 20μM N6-benzyladenine. Shoot buds were visible in more than 80% of the explants, mainly from the petiolar cut ends, by 7 days in culture. Shoot growth was promoted by transferring explants to fresh medium once every 2 wk. As many as 43 shoots per explant were obtained in 13 wk. Regenerated shoots could be easily rooted and successfully transplanted to a peat-based potting mixture.  相似文献   

20.
A transformation procedure was developed for hybrid larch embryogenic tissue using Agrobacterium tumefaciens. The cocultivation procedure yielded one to two transformation events per 100 cocultivated masses. The addition of 100 μm coniferyl alcohol increased the yield. This improved procedure was successfully applied to three other genotypes. After 3 months on selective medium, the transgenic tissue remained embryogenic, which allowed production of transgenic plants in the greenhouse. Stable integration of the transgene was confirmed by PCR and Southern hybridisation on transformed tissues and acclimatised plants. Received: 4 July 1996 / Revision received: 25 November 1996 / Accepted: 10 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号