首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm preservation is a useful technique for maintaining valuable animal strains. Rat sperm could be frozen or freeze-dried in a simple Tris-EDTA solution (TE buffer), and oocytes that were fertilized with these sperm by intracytoplasmic sperm injection (ICSI) developed into offspring. Genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) system enables the rapid production of genetically modified rats. The recent innovative method, named the TAKE method, could easily produce genome edited rats by electroporation of endonucleases into embryos. Although various rat strains have been applied for genome editing, genome editing using strains that were preserved as sperm took longer because it required collecting embryos after maturation of animals regenerated from sperm. To reduce the production period, we directly electroporated Cas9 protein and gRNA into oocytes that were injected with frozen or freeze-dried sperm in TE buffer. No effect of electroporation until 30 V to ICSI-embryos derived from frozen or freeze-dried sperm were shown in the development of offspring. Furthermore, the rate of genome editing in offspring was high (56% for frozen and 50% for freeze-dried sperm). These results concluded that the combination of ICSI and the TAKE method was useful for the rapid production of genome-edited animals from sperm that have been preserved as genetic resources.  相似文献   

2.
BackgroundThe three-dimensional organization of the genome is tightly connected to its biological function. The Hi-C approach was recently introduced as a method that can be used to identify higher-order chromatin interactions genome-wide. The aim of this study was to determine genome-wide chromatin interaction frequencies using the Hi-C approach in mouse sperm cells and embryonic fibroblasts.ResultsThe obtained data demonstrate that the three-dimensional genome organizations of sperm and fibroblast cells show a high degree of similarity both with each other and with the previously described mouse embryonic stem cells. Both A- and B-compartments and topologically associated domains are present in spermatozoa and fibroblasts. Nevertheless, sperm cells and fibroblasts exhibit statistically significant differences between each other in the contact probabilities of defined loci. Tight packaging of the sperm genome results in an enrichment of long-range contacts compared with the fibroblasts. However, only 30% of the differences in the number of contacts are based on differences in the densities of their genome packages; the main source of the differences is the gain or loss of contacts that are specific for defined genome regions. We find that the dependence of the contact probability on genomic distance for sperm is close to the dependence predicted for the fractal globular folding of chromatin.ConclusionsOverall, we can conclude that the three-dimensional structure of the genome is passed through generations without being dramatically changed in sperm cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0642-0) contains supplementary material, which is available to authorized users.  相似文献   

3.
We investigated gene transfer in abalone via electroporated sperm. The mobility of sperm electroporated either in seawater or in marine invertebrate physiological solution was as good as that of the control group. The fertilization rate reached as high as 94.7--99.6% (93.0-- 99.7% for the control group) when 200 eggs were fertilized by 106 or 107 sperm treated with electroporation at 10 kV and 27 pulses for six cycles. Moreover, the fertilization rate of sperm electroporated in the presence of foreign DNA (opAFP-2000CAT) ranging from 0.1 to 3.2 g and at voltages ranging from 2 to 10 kV, at 27 or 211 pulses for six or 12 cycles showed no differences from the control sperm. After DNase digestion, the genome of the electroporated sperm was analysed by polymerase chain reaction, and it was shown that a 138-bp product was amplified, corresponding to the transgene's amplification product. Southern blotting also showed that a positive band located at the same position as that of opAFP-2000CAT was found in the electroporated sperm after DNase treatment. Analysis by PCR of the genome isolated from a trochophore-stage abalone larva, derived from sperm electroporated with 3.2 g opAFP- 2000CAT, showed the existence of foreign DNA in 13 out of 20 examined samples (65%). The integration of the transferred DNA into the genome of transgenic abalone was also shown by Southern blot analysis. Furthermore, CAT activity was positive for the experimental larvae, but the level of CAT expression was lower than that of larvae derived from sperm electroporated with pCAT- Control vector, driven by SV40 promoter and enhancer sequences. These results demonstrate the potential for the use of sperm as mass gene transfer strategy in marine mollusks such as abalone  相似文献   

4.
Venetis C  Theologidis I  Zouros E  Rodakis GC 《Gene》2007,406(1-2):79-90
Species of the marine mussel genus Mytilus are known to contain two mitochondrial genomes, one transmitted maternally (the F genome) and the other paternally (the M genome). The two genomes have diverged by more than 20% in DNA sequence. Here we present the complete sequence of a third genome, genome C, which we found in the sperm of a Mytilus galloprovincialis male. The coding part of the new genome resembles in sequence the F genome, from which it differs by about 2% on average, but differs from the M genome by as much as the F from the M. Its major control region (CR) is more than three times larger than that of the F or the M genome and consists of repeated sequence domains of the CR of the M genome flanked by domains of the CR of the F genome. We present a sequence of events that reconstruct most parsimoniously the derivation of the C genome from the F and M genomes. The sequence consists of a duplication of CR elements of the M genome and subsequent insertion of these tandemly repeated elements in the F genome by recombination. The fact that the C genome was found as the only mitochondrial genome in the sperm of the male from which it was extracted suggests that it is transmitted paternally.  相似文献   

5.
Oocyte cytoplasmic factors can reprogramme the sperm genome during fertilisation or the somatic cell genome during cloning. Diverse reprogramming machinery acts sequentially and interdependently on the imported genome to drive it to totipotency, but their three-dimensional interactions in the cytoplasm remain unknown. Aberrant epigenetic phenomena in early cloned embryos indicate that parts of the somatic cell genome are unyielding to reprogramming forces, owing to their 'knotty' epigenetic features. This fastidious nature of the donor genome might prevent completion of epigenetic reprogramming. It might also help to explain the chronic developmental defects seen in many cloned embryos.  相似文献   

6.
Beyond the haploid genome, mammalian sperm carry a payload of epigenetic information with the potential to modulate offspring phenotypes. Recent studies show that the small RNA repertoire of sperm is remodeled during post-testicular maturation in the epididymis. Epididymal maturation has also been linked to changes in the sperm methylome, suggesting that the epididymis might play a broader role in shaping the sperm epigenome. Here, we characterize the genome-wide methylation landscape in seven germ cell populations from throughout the male reproductive tract. We find very few changes in the cytosine methylation landscape between testicular germ cell populations and cauda epididymal sperm, demonstrating that the sperm methylome is stable throughout post-testicular maturation. Although our sequencing data suggested that caput epididymal sperm exhibit a highly unusual methylome, follow-up studies revealed that this resulted from contamination of caput sperm by extracellular DNA. Extracellular DNA formed web-like structures that ensnared sperm, and was present only in sperm samples obtained from the caput epididymis and vas deferens of virgin males. Curiously, contaminating extracellular DNA was associated with citrullinated histone H3, potentially resulting from a PAD-driven genome decondensation process. Taken together, our data emphasize the stability of cytosine methylation in mammalian sperm, and identify a surprising, albeit transient, period during which sperm are associated with extracellular DNA.  相似文献   

7.
Defining the forces that sculpt genome organization is fundamental for understanding the origin, persistence, and diversification of species. The genomic sequences of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae provide an excellent opportunity to explore the dynamics of chromosome evolution. Extensive chromosomal rearrangement has accompanied divergence from their common ancestor, an event occurring roughly 100 million years ago (Mya); yet, morphologically, these species are nearly indistinguishable and both reproduce primarily by self-fertilization. Here, we show that genes expressed during spermatogenesis (sperm genes) are nonrandomly distributed across the C. elegans genome into three large clusters located on two autosomes. In addition to sperm genes, these chromosomal regions are enriched for genes involved in the hermaphrodite sperm/oocyte switch and in the reception of sperm signals that control fertilization. Most loci are present in single copy, suggesting that cluster formation is largely due to gene aggregation and not to tandem duplication. Comparative mapping indicates that the C. briggsae genome differs dramatically from the C. elegans genome in clustering. Because clustered genes have a direct role in reproduction and thus fitness, their aggregated pattern might have been shaped by natural selection, perhaps as hermaphroditism evolved.  相似文献   

8.
Species of the family Mytilidae have 2 mitochondrial genomes, one that is transmitted through the egg and one that is transmitted through the sperm. In the Mytilus edulis species complex (M. edulis, M. galloprovincialis, and M. trossulus) there is also a strong mother-dependent sex-ratio bias in favor of one or the other sex among progeny from pair matings. In a previous study, we have shown that sperm mitochondria enter the egg and that their behavior during cell division is different depending on whether the egg originated from a female- or male-biased mother. Specifically, in eggs from females that produce mostly or exclusively daughters, sperm mitochondria disperse randomly among cells after egg division. In eggs from females that produce predominantly sons, sperm mitochondria tend to stay together in the same cell. Here, we extend these observations and show that in 2- and 4-cell embryos from male-biased mothers most sperm mitochondria are located near or at the cleavage furrow of the major cell, in contrast to embryos from female-biased mothers where there is no preferential association of sperm mitochondria with the cleavage furrow. This observation provides evidence for an early developmental mechanism through which sperm mitochondria are preferentially channeled into the primordial cells of male embryos, thus making the paternal mitochondrial genome the dominant mtDNA component of the male germ line.  相似文献   

9.
Wang D  Li LB  Hou ZW  Kang XJ  Xie QD  Yu XJ  Ma MF  Ma BL  Wang ZS  Lei Y  Huang TH 《PloS one》2011,6(12):e28586
Complete understanding of the route of HIV-1 transmission is an important prerequisite for curbing the HIV/AIDS pandemic. So far, the known routes of HIV-1 transmission include sexual contact, needle sharing, puncture, transfusion and mother-to-child transmission. Whether HIV can be vertically transmitted from human sperm to embryo by fertilization is largely undetermined. Direct research on embryo derived from infected human sperm and healthy human ova have been difficult because of ethical issues and problems in the collection of ova. However, the use of inter-specific in vitro fertilization (IVF) between human sperm and hamster ova can avoid both of these problems. Combined with molecular, cytogenetical and immunological techniques such as the preparation of human sperm chromosomes, fluorescent in situ hybridization (FISH), and immunofluorescence assay (IFA), this study mainly explored whether any integrated HIV provirus were present in the chromosomes of infected patients' sperm, and whether that provirus could be transferred into early embryos by fertilization and maintain its function of replication and expression. Evidence showed that HIV-1 nucleic acid was present in the spermatozoa of HIV/AIDS patients, that HIV-1 provirus is present on the patient sperm chromosome, that the integrated provirus could be transferred into early embryo chromosomally integrated by fertilization, and that it could replicate alongside the embryonic genome and subsequently express its protein in the embryo. These findings indicate the possibility of vertical transmission of HIV-1 from the sperm genome to the embryonic genome by fertilization. This study also offers a platform for the research into this new mode of transmission for other viruses, especially sexually transmitted viruses.  相似文献   

10.
The sperm genome is tightly packed into a minimal volume of sperm nuclei. Sperm chromatin is highly condensed by protamines (PRMs) after histone–protamine replacement, and the majority of the sperm genome forms a nucleo-protamine structure, namely, the PRM–DNA complex. The outline of sperm chromatin structure was proposed 30 years ago, and the details have been explored by approaches from several independent research fields including male reproduction and infertility, DNA biopolymer, and most recently, genome-wide sequence-based approaches. In this review, the history of research on sperm chromatin structure is briefly described, and the progress of recent related studies is summarized to obtain a more integrated view for the sperm chromatin, an extremely compacted “black box.”  相似文献   

11.
Kidane D  Dalal S  Keh A  Liu Y  Zelterman D  Sweasy JB 《DNA Repair》2011,10(4):390-397
Maintaining genome integrity in germ cells is important, given that the germ cells produce the next generation of offspring. Base excision repair is a DNA repair pathway that is responsible for the repair of most endogenous DNA damage. A key enzyme that functions in this repair pathway is DNA polymerase beta (Pol β). We previously used conditional gene targeting to engineer mice with sperm deleted of the Pol B gene, which encodes Pol β. We characterized mutagenesis in the sperm of these mice and compared it to wild-type and mice heterozygous for the Pol B gene. We found that sperm obtained that were heterozygously or homozygously deleted of the Pol B gene exhibited increased mutation frequencies compared to wild-type sperm. We identified an increase in transition mutations in both heterozygously and homozygously deleted sperm, and the types of mutations induced suggest that a polymerase other than Pol β functions in its absence. Interestingly, most of the transversions we observed were induced only in heterozygous, compared with wild-type sperm. Our results suggest that haploinsufficiency of Pol β leads to increased frequencies and varieties of mutations. Our study also shows that Pol β is critical for genome stability in the germline.  相似文献   

12.
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.  相似文献   

13.
This paper reports some experimental results related to the expression of parental genomes during the development of the water fernMarsilea quadrifolia L., a plant with graduated heteroblastic development. We found a non-random segregation of the original chromatids of the paternal genome, as shown by autoradiography of embryo sections after fertilization of eggs with [3H]thymidin-tagged sperm. From the 16-cell stage on, label is mainly concentrated in the sectors where apical cells will differentiate, and later in or near the apical areas of the young organs. Similar results had been found previously inMarsilea vestita. We also observed aberrations in primary organ development after fertilization with sperm treated with actinomycin, ethidium bromide, hydroxyurea, bromodeoxyuridin, or chlorambucil. The growth of the first organs was quite normal, indicating that they develop under the control of the maternal genome. The subsequent organs displayed abnormal development, indicating that they are under the control of both parental genomes.  相似文献   

14.
Gametogenesis of intergroup hybrids of hemiclonal frogs   总被引:1,自引:0,他引:1  
European water frog hybrids Rana esculenta (R. ridibundaxR. lessonae) reproduce hemiclonally, by hybridogenesis: in the germ line they exclude the genome of one parental species and produce haploid gametes with an unrecombined genome of the other parental species. In the widespread L-E population system, both sexes of hybrids (E) coexist with R. lessonae (L). They exclude the lessonae genome and produce ridibunda gametes. In the R-E system, hybrid males coexist with R. ridibunda (R); they exclude either their ridibunda or their lessonae genome and produce sperm with a lessonae or with a ridibunda genome or a mixture of both kinds of sperm. We examined 13 male offspring, 12 of which were from crosses between L-E system and R-E system frogs. All were somatically hybrid. With one exception, they excluded the lessonae genome in the germ line and subsequently endoreduplicated the ridibunda genome. Spermatogonial metaphases contained a haploid or a diploid number of ridibunda chromosomes, identified through in situ hybridization to a satellite DNA marker, and by spermatocyte I metaphases containing a haploid number of ridibunda bivalents. The exception, an F1 hybrid between L-E system R. lessonae and R-E system R. ridibunda, was not hybridogenetic, showed no genome exclusion, and evidenced a disturbed gametogenesis resulting from the combination of two heterospecific genomes. None of the hybridogenetic hybrids showed any cell lines excluding the ridibunda genome, the pattern most frequent in hybrids of the R-E system, unique to that system, and essential for its persistence. A particular combination of R-E system lessonae and R-E system ridibunda genomes seems necessary to induce the R-E system type of hemiclonal gametogenesis.  相似文献   

15.
Bivalves of the families Mytilidae, Unionidae, and Veneridae have an unusual mode of mitochondrial DNA (mtDNA) transmission called doubly uniparental inheritance (DUI). A characteristic feature of DUI is the presence of two gender-associated mtDNA genomes that are transmitted through males (M-type mtDNA) and females (F-type mtDNA), respectively. Female mussels are predominantly homoplasmic with only the F-type expressed in both somatic and gonadal tissue; males are heteroplasmic with the M-type expressed in the gonad and F-type in somatic tissue for the most part. An unusual evolutionary feature of this system is that an mt genome with F-coding sequences occasionally invades the male route of inheritance (i.e., a "role reversal" event), and is thereafter transmitted as a new M-type. Phylogenetic studies have demonstrated that the new or "recently masculinized" M-types may eventually replace the older or "standard" M-types over time. To investigate whether this replacement process could be due to an advantage in sperm swimming behavior, we measured differences in motility parameters and found that sperm with the recently masculinized M-type had significantly faster curvilinear velocity and average path velocity when compared to sperm with standard M-type. This increase in sperm swimming speed could explain the multiple evolutionary replacements of standard M-types by masculinized M-types that have been hypothesized for the mytilid lineage. However, our observations do not support the hypothesis that DUI originated because it permits the evolution of mitochondrial adaptations specific to sperm performance, otherwise, the evolutionarily older, standard M genome should perform better.  相似文献   

16.
Advances in mass spectrometry technology, high-throughput proteomics and genome annotations have resulted in significant increases in our molecular understanding of sperm composition. Using improved separation and detection methods and an updated genome annotation, a re-analysis of the Drosophila melanogaster sperm proteome (DmSP) has resulted in the identification of 956 sperm proteins. Comparative analysis with our previous proteomic dataset revealed 766 new proteins and an updated sperm proteome containing a total of 1108 proteins, termed the DmSP-II. This expanded dataset includes additional proteins with predicted sperm functions and confirms previous findings concerning the genomic organization of sperm loci. Bioinformatic and protein network analyses demonstrated high quality and reproducibility of proteome coverage across three replicate mass spectrometry runs. The use of whole-cell proteomics in conjunction with characterized phenotypes, functional annotations and pathway information has advanced our systems level understanding of sperm proteome functional networks.  相似文献   

17.
18.
A significant fraction of living sea urchin species have completely or partially eliminated the pluteus larval stage and instead develop directly from embryo to adult. Direct developing sea urchins develop from large buoyant eggs. We present data to show that evolution of these large eggs is accompanied by the evolution of spermatozoa with elogate heads, in contrast with the conical sperm heads typical of most echinoids. Two congeneric Australian species, Heliocidaris tuberculata , which develops via a pluteus, and H. erythogramma , a direct developer, were investigated in detail. The sperm of H. erythrogramma have an elongate head (11 μm in length) as compared to the conical sperm head (5.6 μm) of H. tuberculata . Electrophoretic analysis of the sperm histones indicates that no unusual histones or protamines are associated with modified head morphology. Genome sizes were determined by flow cytometry. H. erythrogramma has a haploid genome size of 1.3 pg as compared to a haploid genome size of 0.95 pg for H. tuberculata . Other direct developing echinoids have elongate sperm heads, and co-evolution of gametes is indicated as a common feature of evolution of direct development in echinoids. The most extreme case, the direct developing cidaroid sea urchin, Phyllacanthus parvispinus , possesses the longest and narrowest sperm head (20 μm × 1 μm) ever observed in an echinoid.  相似文献   

19.
Meiotic chromosomes in an oocyte are not only a maternal genome carrier but also provide a positional signal to induce cortical polarization and define asymmetric meiotic division of the oocyte, resulting in polar body extrusion and haploidization of the maternal genome. The meiotic chromosomes play dual function in determination of meiosis: 1) organizing a bipolar spindle formation and 2) inducing cortical polarization and assembly of a distinct cortical cytoskeleton structure in the overlying cortex for polar body extrusion. At fertilization, a sperm brings exogenous paternal chromatin into the egg, which induces ectopic cortical polarization at the sperm entry site and leads to a cone formation, known as fertilization cone. Here we show that the sperm chromatin-induced fertilization cone formation is an abortive polar body extrusion due to lack of spindle induction by the sperm chromatin during fertilization. If experimentally manipulating the fertilization process to allow sperm chromatin to induce both cortical polarization and spindle formation, the fertilization cone can be converted into polar body extrusion. This suggests that sperm chromatin is also able to induce polar body extrusion, like its maternal counterpart. The usually observed cone formation instead of ectopic polar body extrusion induced by sperm chromatin during fertilization is due to special sperm chromatin compaction which restrains it from rapid spindle induction and therefore provides a protective mechanism to prevent a possible paternal genome loss during ectopic polar body extrusion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号