首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Incorporating crop residues and biochar has received increasing attention as tools to mitigate atmospheric carbon dioxide (CO2) emissions and promote soil carbon (C) sequestration. However, direct comparisons between biochar, torrefied biomass, and straw on both labile and recalcitrant soil organic matter (SOM) remain poorly understood. In this study, we explored the impact of biochars produced at different temperatures and torrefied biomass on the simple C substrates (glucose, amino acids), plant residues (Lolium perenne L.), and native SOM breakdown in soil using a 14C labeling approach. Torrefied biomass and biochars produced from wheat straw at four contrasting pyrolysis temperatures (250, 350, 450, and 550 °C) were incorporated into a sandy loam soil and their impact on C turnover compared to an unamended soil or one amended with unprocessed straw. Biochar, torrefied biomass, and straw application induced a shift in the soil microbial community size, activity, and structure with the greatest effects in the straw‐amended soil. In addition, they also resulted in changes in microbial carbon use efficiency (CUE) leading to more substrate C being partitioned into catabolic processes. While overall the biochar, torrefied biomass, and straw addition increased soil respiration, it reduced the turnover rate of the simple C substrates, plant residues, and native SOM and had no appreciable effect on the turnover rate of the microbial biomass. The negative SOM priming was positively correlated with biochar production temperature. We therefore ascribe the increase in soil CO2 efflux to biochar‐derived C rather than that originating from SOM. In conclusion, the SOM priming magnitude is strongly influenced by both the soil organic C quality and the biochar properties. In comparison with straw, biochar has the greatest potential to promote soil C storage. However, straw and torrefied biomass may have other cobenefits which may make them more suitable as a CO2 abatement strategy.  相似文献   

2.
This preliminary study examines the feasibility and applications of pyrolysis and biochar in China to understand issues about bioenergy generation, agricultural cost savings and enhancement of atmospheric quality. Multiple agricultural and animal wastes are analyzed and quantitative measures of economic and environmental benefits are provided. The Poyang Lake, one of the most important clean water lakes in China, is examined to see how pyrolysis and biochar applications can be beneficiary to farmers and society in terms of the economic and greenhouse gas values. Rice straw, corn stover, poplar, orchard wastes, animal wastes and open pasture wastes are primary feedstocks for fast and slow pyrolysis. The results show that both fast and slow pyrolysis are profitable under current situations where corn stover-based pyrolysis yields the highest economic benefits but that of animal wastes-based can offset more GHG emissions. Rice straw yields a loss but it can still be a potential choice since the material is the most popular in study area. Sensitivity analysis is provided to understand the changes of economic and environmental benefits under various market conditions and the results indicate that in general, significant profits of pyrolysis and biochar application bring additional margin of safety and therefore, pyrolysis and biochar does not incur a loss unless input costs increase more than 53% to 64%.  相似文献   

3.
As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha?1 yr?1 corn straw (CS) amendment, and 2.4 t ha?1 yr?1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg?1 grain) than that of Control (0.24 kg CO2‐Ckg?1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ckg?1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter.  相似文献   

4.
China has developed ambitious bioenergy installation targets as part of its broader goals to increase its renewable energy‐generating capacity and decarbonize its economy. A key target feedstock for bioenergy is the 800 million tonnes of agricultural residues that China produces each year. At present, the main financial incentive to support bioenergy generation from agricultural residues is a feed‐in‐tariff provided for bioenergy that is produced by units that take 80% or more of their feedstock energy from biomass. Although this policy has catalysed the construction of many bioenergy units, there are reports that these projects are experiencing serious financial and technical problems, leading to low operational efficiency and even closure. An alternative option for China's agricultural residues is cofiring with coal in existing power stations. However, this is currently unprofitable for power station operators, as cofiring is not eligible for financial assistance through the bioenergy feed‐in‐tariff. In the light of China's ambitious target to install 30GW of bioenergy generation capacity by 2020, this study investigates the extent to which extension of the bioenergy feed‐in‐tariff to include cofiring could contribute towards this goal. The results suggest that 39% of China's straw energy resources are located within 50 km of a power station. Assuming cofiring ratios of up to 10% coal energy replacement, an annual 89–117TWh of electricity could be generated by cofiring agricultural residues collected within 50 km radii of power stations. If China extends its bioenergy subsidies to include cofiring, an annual 62–92TWh can be produced at an internal rate of return of 8% or more. This equates to 42–62% of the bioenergy generation that China might expect if it met its 2020 target of installing 30GW of bioenergy capacity. Overall, this indicates a strong case for the Chinese government to extend its existing bioenergy feed‐in‐tariff to include cofiring at low energy replacement ratios.  相似文献   

5.
Cattle manure can be processed to produce bioenergy, resulting in by‐products with different physicochemical characteristics. To evaluate whether application of such bioenergy by‐products to soils would be beneficial compared with their unprocessed counterpart, we quantified differences in greenhouse gas emissions and carbon (C) and nitrogen (N) dynamics in soil. Three by‐products (15N‐labeled cattle manure, from which anaerobic digestate was obtained, which was subsequently pyrolysed) were applied to a loess and a sandy soil in a laboratory incubation study. The highest losses of soil C from biological activity (CO2 respiration) were observed in manure treatments (39% and 32% for loess and sandy soil), followed by digestate (31% and and 18%), and biochar (15% and and 7%). Emissions of nitrous oxide (N2O) ranged from 0.6% of applied N from biochar to 4.0% from manure. Isotope labeling indicated that manure N was most readily mineralized, contributing 50% to soil inorganic N. The anaerobic digestate was the only by‐product increasing the mineral N pool, while reducing emissions of N2O compared with manure. In biochar treatments, less than 18.3% of soil mineral N derived from the biochar, while it did not constrain mineralization of native soil N. By‐products of anaerobic digestion and pyrolysis revealed soil fertility in addition to environmental benefits. However, the reported advantages lessen when the declining yields of C and N over the bioenergy chain are considered.  相似文献   

6.
Soil as the largest global carbon pool has played a great role in sequestering the atmospheric carbon dioxide (CO2). Although global carbon sequestration potentials have been assessed since the 1980s, few investigations have been made on soil carbon sequestration (SCS) in China's cropland. China is a developing country and has a long history of agricultural activities. Estimation of SCS potentials in China's cropland is very important for assessing the potential measures to prevent the atmospheric carbon rise and predicting the atmospheric CO2 concentration in future. After review of the available results of the field experiments in China, relationships between SCS and nitrogen fertilizer application, straw return and no‐tillage (NT) practices were established for each of the four agricultural regions. According to the current agricultural practices and their future development, estimations were made on SCS by nitrogen fertilizer application, straw return and NT in China's cropland. In the current situation, nitrogen fertilizer application, straw return and zero tillage can sequester 5.96, 9.76 and 0.800 Tg C each year. Carbon sequestration potential will increase to 12.1 Tg C yr−1 if nitrogen is fertilized on experts' recommendations. The carbon sequestration potentials of straw return and NT can reach 34.4 and 4.60 Tg C yr−1 when these two techniques are further popularized. In these measures, straw return is the most promising one. Full popularization of straw return can reduce 5.3% of the CO2 emission from fossil fuel combustion in China in 1990, which meets the global mean CO2 reduction requested by the Kyoto Protocol (5.2%). In general, if more incentive policies can be elaborated and implemented, the SCS in China's cropland will be increased by about two times. So, popularization of the above‐mentioned agricultural measures for carbon sequestration can be considered as an effective tool to prevent the rapid rise of the atmospheric CO2 in China.  相似文献   

7.
This study aimed to investigate the extent to which it is possible to marry the two seemingly opposing concepts of heat and/or power production from biomass with carbon sequestration in the form of biochar. To do this, we investigated the effects of feedstock, highest heating temperature (HTT), residence time at HTT and carrier gas flow rate on the distribution of pyrolysis co‐products and their energy content, as well as the carbon sequestration potential of biochar. Biochar was produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650 °C), with three residence times (10, 20 and 40 min) and three carrier gas flow rates (0, 0.33 and 0.66 l min?1). The energy balance of the system was determined experimentally by quantifying the energy contained within pyrolysis co‐products. Biochar was also analysed for physicochemical and soil functional properties, namely environmentally stable‐C and labile‐C content. Residence time showed no considerable effect on any of the measured properties. Increased HTT resulted in higher concentrations of fixed C, total C and stable‐C in biochar, as well as higher heating value (HHV) due to the increased release of volatile compounds. Increased carrier gas flow rate resulted in decreased biochar yields and reduced biochar stable‐C and labile‐C content. Pyrolysis at 650 °C showed an increased stable‐C yield as well as a decreased proportion of energy stored in the biochar fraction but increased stored energy in the liquid and gas co‐products. Carrier gas flow rate was also seen to be influential in determining the proportion of energy stored in the gas phase. Understanding the influence of production conditions on long term biochar stability in addition to the energy content of the co‐products obtained from pyrolysis is critical for the development of specifically engineered biochar, be it for agricultural use, carbon storage, energy generation or combinations of the three.  相似文献   

8.
Climate change is predicted to increase climate variability and frequency of extreme events such as drought, straining water resources in agricultural systems. Thus, limited irrigation strategies and soil amendments are being explored to conserve water in crop production. Biochar is the recalcitrant, carbon‐based coproduct of biomass pyrolysis during bioenergy production. When used as a soil amendment, biochar can increase soil water retention while enhancing soil properties and stimulating food webs. We investigated the effects of coupled biochar amendment and limited irrigation on belowground food web structure and function in an irrigated maize agroecosystem. We hypothesized that soil biota biomass and activity would decrease with limited irrigation and increase with biochar amendment and that biochar amendment would mitigate the impact of limited irrigation on the soil food web. One year after biochar addition, we extracted, identified, and estimated the biomass of taxonomic groups of soil biota (e.g., bacteria, fungi, protozoa, nematodes, and arthropods) from wood‐derived biochar‐amended (30 Mg ha?1) and nonamended soils under maize with limited (two‐thirds of full) and full irrigation. We modeled structural and functional properties of the soil food web. Neither biochar amendment nor limited irrigation had a significant effect on biomass of the soil biota groups. Modeled soil respiration and nitrogen mineralization fluxes were not different between treatments. A comparison of the structure and function of the agroecosystem soil food web and a nearby native grassland revealed that in this temperate system, the negative impact of long‐term conventional agricultural management outweighed the impact of limited irrigation. One year of biochar amendment did not mitigate nor further contribute to the negative effects of historical agricultural management.  相似文献   

9.
China's bioenergy potential   总被引:2,自引:0,他引:2  
Despite great enthusiasm about developing renewable energy in China, the country's bioenergy potential remains unclear. Traditional utilization of bioenergy through primarily household combustion of crop residue and fuelwood is still a predominant energy source for rural China. More efficient utilization of ~300 million tons of crop residues for bioelectricity generation could add a couple of percent of renewable energy to China's total energy production. With <9% of the world's arable land supporting ~20% of the world's population, China is already a net grain importer and has little extra farmland for producing a significantly additional amount of biofuels from first‐generation energy crops, such as maize, sugarcane, and soybean. Second‐generation energy crops hold the greatest potential for bioenergy development worldwide. Miscanthus, a native perennial C4 grass that produces high biomass across almost the entire climatic zone of China, is the most promising second‐generation energy crop to domesticate and cultivate. A reasonable near‐term goal is to produce 1 billion tons of Miscanthus biomass annually from ~100 million hectares of marginal and degraded land concentrated in northern and northwestern China. This can generate ~1458 TW h electricity and mitigate ~1.7 billion tons of CO2 emission from power coal, which account for ~45% of China's electricity output and ~28% of CO2 emission in 2007. Furthermore, growing perennial grasses on marginal and degraded land will contribute to the ongoing efforts in China to restore vast areas of land under serious threat of desertification. With this potential taken into account, bioenergy can play a major role in meeting China's rapidly growing energy demand while substantially reducing greenhouse gas emission.  相似文献   

10.
Algal biochar: effects and applications   总被引:1,自引:0,他引:1  
Algae represent a promising target for the generation of bioenergy through slow pyrolysis, leading to the production of biochar. This study reports experiments conducted on the production of freshwater and saltwater macroalgal biochar in pilot‐scale quantities, the physical and chemical characteristics of the biochars, and their impact on plant growth. The biochars are low in carbon (C) content, surface area and cation exchange capacity, while being high in ash and nutrients. Trace element analysis demonstrates that macroalgal biochar produced from unpolluted water does not contain toxic trace elements in excess of levels mandated for unrestricted use as a biosolids amendment to soils. Pot trials conducted using a C and nutrient‐poor soil, without and with additional fertilizer, demonstrate dramatic increases between 15 and 32 times, respectively, in plant growth rate for biochar treatments compared with the no biochar controls, with additional smaller increases when fertilizer was added. Pot trials conducted using a relatively fertile agricultural soil showed smaller but significant impacts of biochar amendment over the controls.  相似文献   

11.
There is often over 50% carbon loss during the thermal conversion of biomass into biochar, leading to it controversy for the biochar formation as a carbon sequestration strategy. Sometimes the biochar also seems not to be stable enough due to physical, chemical, and biological reactions in soils. In this study, three phosphorus-bearing materials, H3PO4, phosphate rock tailing (PRT), and triple superphosphate (TSP), were used as additives to wheat straw with a ratio of 1: 0.4–0.8 for biochar production at 500°C, aiming to alleviate carbon loss during pyrolysis and to increase biochar-C stabilization. All these additives remarkably increased the biochar yield from 31.7% (unmodified biochar) to 46.9%–56.9% (modified biochars). Carbon loss during pyrolysis was reduced from 51.7% to 35.5%–47.7%. Thermogravimetric analysis curves showed that the additives had no effect on thermal stability of biochar but did enhance its oxidative stability. Microbial mineralization was obviously reduced in the modified biochar, especially in the TSP-BC, in which the total CO2 emission during 60-d incubation was reduced by 67.8%, compared to the unmodified biochar. Enhancement of carbon retention and biochar stability was probably due to the formation of meta-phosphate or C-O-PO3, which could either form a physical layer to hinder the contact of C with O2 and bacteria, or occupy the active sites of the C band. Our results indicate that pre-treating biomass with phosphors-bearing materials is effective for reducing carbon loss during pyrolysis and for increasing biochar stabilization, which provides a novel method by which biochar can be designed to improve the carbon sequestration capacity.  相似文献   

12.
While biochar soil amendment has been widely proposed as a soil organic carbon (SOC) sequestration strategy to mitigate detrimental climate changes in global agriculture, the SOC sequestration was still not clearly understood for the different effects of fresh and aged biochar on SOC mineralization. In the present study of a two‐factorial experiment, topsoil samples from a rice paddy were laboratory‐incubated with and without fresh or aged biochar pyrolyzed of wheat residue and with and without crop residue‐derived dissolved organic matter (CRM) for monitoring soil organic matter decomposition under controlled conditions. The six treatments included soil with no biochar, with fresh biochar and with aged biochar treated with CRM, respectively. For fresh biochar treatment, the topsoil of a same rice paddy was amended with wheat biochar directly from a pyrolysis wheat straw, the soil with aged biochar was collected from the same soil 6 years following a single amendment of same biochar. Total CO2 emission from the soil was monitored over a 64 day time span of laboratory incubation, while microbial biomass carbon and phospholipid fatty acid (PLFA) were determined at the end of incubation period. Without CRM, total organic carbon mineralization was significantly decreased by 38.8% with aged biochar but increased by 28.9% with fresh biochar, compared to no biochar. With CRM, however, the significantly highest net carbon mineralization occurred in the soil without biochar compared to the biochar‐amended soil. Compared to aged biochar, fresh biochar addition significantly increased the total PLFA concentration by 20.3%–33.8% and altered the microbial community structure by increasing 17:1ω8c (Gram‐negative bacteria) and i17:0 (Gram‐positive bacteria) mole percentages and by decreasing the ratio of fungi/bacteria. Furthermore, biochar amendment significantly lowered the metabolic quotient of SOC decomposition, thereby becoming greater with aged biochar than with fresh biochar. The finding here suggests that biochar amendment could improve carbon utilization efficiency by soil microbial community and SOC sequestration potential in paddy soil can be enhanced by the presence of biochar in soil over the long run.  相似文献   

13.
The composition and pyrolysis characteristics of 60 types of biomass waste from the following six source categories were compared: agricultural residues, woody pruning waste from gardens and lawns, aquatic plant material from eutrophic water bodies, nutshells and fruit peels, livestock manure and residual sludge from municipal wastewater treatment. The yield and physicochemical characteristics of the biochar produced from these feedstocks at 350 °C, 500 °C and 650 °C were also examined. Results of correlation and canonical correspondence analysis between feedstock composition and biochar properties showed that feedstock type played an important role in controlling yield and properties of biochars. The yields of biochar dry ash‐free (daf.) basis were positively correlated with cellulose, lignin and lignin/cellulose content of feedstock; and ash content hampered the biochar production. Furthermore, the intensity of correlation between biochar yield and its feedstock composition was improved with pyrolysis temperature and degree of feedstock decomposition. The fixed carbon content in biochar was also negatively influenced by ash content of feedstock, and it increased with increasing pyrolysis temperature when the ash content was below 34.57% in feedstock and decreased when the ash content exceeded. The fixed carbon production in biochar per unit ash‐free mass (af.) was positively related to cellulose, lignin and lignin/cellulose content in feedstock, which were same with the yield of biochar (daf.). But on the contrary, the volatiles content in biochar (af.) had negative correlation with these organic constituents. For most feedstocks, the differences in the biochar characteristics among the biomass categories were greater than within any individual category. C/N, H/C and O/C atomic ratio and bulk density of biochar from different types of biomass were also compared. The results will provide guidance for the reutilization of biomass wastes and production of biochar with specified properties for soil amendment applications.  相似文献   

14.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

15.
Agricultural land in the Midwest is a source of food and fuel, as well as biodiversity. It is also a cause of excess nutrients that make their way to the Mississippi River and the Gulf of Mexico. To address unsustainable changes to biogeochemical cycles and ecosystem functions, a multidisciplinary approach involving social science, natural science, and engineering is often effective. Given the potential of second‐generation biofuels, and capitalizing on the deep‐rooted perennial bioenergy crops capable of thriving in poor soils, we demonstrated an integrated socio‐environmental analysis of the impacts of growing switchgrass within row‐crop landscapes in Illinois. In this study, we model land use scenarios that incorporate switchgrass as a biofuel crop in a Midwest corn‐belt watershed using the Soil Water Assessment Tool coupled with an economic analysis for the Vermilion Basin in Illinois. We estimated the values of ecosystem services under an alternative bioenergy landscape, including commodity and bioenergy crops, changes in biogeochemistry, and recreational services. The estimated annual values of nitrate and sediment reduction attributed to bioenergy crops range from $38 million to $97 million and $16,000 to $197,000, respectively. The annual value of carbon dioxide emission reduction ranges from $1.8 million to $6.1 million based on the initial crop rotation pattern. Estimated average annual values for wildlife viewing, water‐based recreation, and pheasant hunting are $1.24 million, $0.17 million, and $0.3 million, respectively. To our knowledge, this study represents the first effort to comprehensively quantify ecosystem services using a process‐based model, and estimate their value in an alternative bioenergy landscape. The information we generate could aid in understanding the potential for biomass production from marginal land and the total economic value of the landscape at various spatial scales. The framework is useful in fostering alternative bioenergy landscapes with synergies in a food, energy, and conservation nexus.  相似文献   

16.
Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short‐term laboratory incubations by a number of authors, yet evidence from long‐term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon‐use efficiency from the co‐location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.  相似文献   

17.
By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.  相似文献   

18.
Both soil and biochar properties are known to influence greenhouse gas emissions from biochar‐amended soils, but poor understanding of underlying mechanisms challenges prediction and modeling. Here, we examine the effect of six lignocellulosic biochars produced from the pyrolysis of corn stover and wood feedstocks on CO2 and N2O emissions from soils collected from two bioenergy cropping systems. Effects of biochar on total accumulated CO2‐C emissions were minimal (<0.45 mg C g?1 soil; <10% of biochar C), consistent with mineralization and hydrolysis of small labile organic and inorganic C fractions in the studied biochars. Comparisons of soil CO2 emissions with emissions from microbially inoculated quartz–biochar mixtures (‘quartz controls’) provide evidence of soil and biochar‐specific negative priming. Five of six biochar amendments suppressed N2O emissions from at least one soil, and the magnitude of N2O emissions suppression varied with respect to both biochar and soil types. Biochar amendments consistently decreased final soil NO3? concentrations, while contrasting effects on pH, NH4+, and DOC highlighted the potential for formation of anaerobic microsites in biochar‐amended soils and consequential shifts in the soil redox environment. Thus, results implicated both reduced substrate availability and redox shifts as potential factors contributing to N2O emission suppression. More research is needed to confirm these mechanisms, but overall our results suggest that soil biochar amendments commonly reduce N2O emissions and have little effect on CO2 emissions beyond the mineralization and/or hydrolysis of labile biochar C fractions. Considering the large C credit for the biochar C, we conclude that biochar amendments can reduce greenhouse gas emissions and enhance the climate change mitigation potential of bioenergy cropping systems.  相似文献   

19.
One factor limiting the understanding and evaluation of biochar for soil amendment and carbon sequestration applications is the scarcity of long-term, large-scale field studies. Limited land, time, and material resources require that biochars for field trials be carefully selected. In this study, 17 biochars from the fast pyrolysis, slow pyrolysis, and gasification of corn stover, switchgrass, and wood were thoroughly characterized and subjected to an 8-week soil incubation as a way to select the most promising biochars for a field trial. The methods used to characterize the biochars included proximate analysis, CHNS elemental analysis, Brunauer?CEmmett?CTeller surface (BET) area, photo-acoustic Fourier transform infrared spectroscopy, and quantitative 13?C solid-state nuclear magnetic resonance (NMR) spectroscopy. The soil incubation study was used to relate biochar properties to three soil responses: pH, cation exchange capacity (CEC), and water leachate electrical conductivity (EC). Characterization results suggest that biochars made in a kiln process where some oxygen was present in the reaction atmosphere have properties intermediate between slow pyrolysis and gasification and therefore, should be grouped separately. A close correlation was observed between aromaticity determined by NMR and fixed carbon fraction determined by proximate analysis, suggesting that the simpler, less expensive proximate analysis method can be used to gain aromaticity information. Of the 17 biochars originally assessed, four biochars were ultimately selected for their potential to improve soil properties and to provide soil data to refine the selection scheme: corn stover low-temperature fast pyrolysis (highest amended soil CEC, information on high volatile matter/O?CC ratio biochar), switchgrass O2/steam gasification (relatively high BET surface area, and amended soil pH, EC, and CEC), switchgrass slow pyrolysis (higher-amended soil pH and EC), and hardwood kiln carbonization (information on slow pyrolysis, gasification and kiln-produced differences).  相似文献   

20.
Biochar has been widely researched as an important technology for climate smart agriculture, yet work is still necessary to identify the magnitude of potential greenhouse gas (GHG) mitigation and mechanisms involved. This study measured slow‐pyrolysis wood‐derived biochar's impact on GHG efflux, mineral N dynamics, and soil organic C in a series of two incubations across fertilized and unfertilized agricultural soils and soil moisture regimes. This research explored the magnitude of biochar's full GHG mitigation potential and drivers of such impacts. Results of this incubation indicate slow‐pyrolysis wood‐derived biochar has potential to provide annual emission reductions of 0.58–1.72 Mg CO2‐eq ha?1 at a 25 Mg ha?1 biochar application rate. The greatest GHG mitigation potential was from C sequestration and nitrous oxide (N2O) reduction in mineral N fertilized soils, with minimal impacts on N2O emissions in unfertilized soils, carbon dioxide (CO2) emissions, and methane (CH4) uptake. Analysis of mineral N dynamics in the bulk soil and on biochar isolates indicated that neither biochar impacts on net mineralization and nitrification nor retention of ammonium () on biochar isolates could explain biochar's N2O reduction. Instead, biochar amendments exhibited consistent N2O emission reductions relative to the N2O emission in the control soil regardless of soil type and fertilization. Results across a soil moisture gradient suggest that woody biochar may aerate soils shifting redox conditions and subsequent N2O production. Understanding the magnitude of biochar's GHG reduction potential and the mechanisms driving these effects can help inform biochar modeling efforts, explain field results and identify agricultural applications that maximize biochar's full GHG mitigation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号