首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
RACK1 is a scaffold protein with the ability to interact in a regulated manner with a diverse number of ligands from distinct signal-transduction pathways. This assessment allowed us to infer that it may be involved in different processes such as nodulation. In a recent study we showed by silencing, that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development in Phaseolus vulgaris. On the other hand, we have also observed that its overexpression provokes a dramatic phenotype in: (a) seedlings that have been exposed to heat, in which systemic necrosis is induced; and (b) in Agrobacterium rhizogenes-transformed roots, where nodulation is strongly inhibited and nodules show early senescent symptoms. These findings indicate that PvRACK1 may be an integrator of diverse signal-transduction pathways in processes as varied as nodulation, cell expansion, heat stress responses, and systemic activation of necrosis.  相似文献   

3.
In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it is hypothesized that the Rhizobium Nod factor induces cell division in the root cortex by stimulating the production of flavonoids that function as auxin transport inhibitors. In nodules CHS mRNA is predominantly present in a region at the apex of the nodule consisting of meristematic and cortical cells. These cells are not infected by Rhizobium. Therefore it is postulated that CHS plays a role in nodule development rather than in a defence response. In roots CHS mRNA is located at a similar position as in nodules, suggesting that CHS has the same function in both root and nodule development. When nodules are formed by mutants of Rhizobium leguminosarum bv. viciae that are unable to secrete β(1-2) glucan and to synthesize the O-antigen containing LPS I, CHS genes are also expressed in regions of the nodule that are infected by Rhizobium. It is postulated that the impaired development of nodules formed by these mutants is due to an induction of a plant defence response.  相似文献   

4.
The symbiotic phenotype of five Tn5-induced mutants of Rhizobium etli affected in different anabolic pathways (namely, gluconeogenesis and biosynthesis of lysine, purine, or pyrimidine) was analyzed. These mutants induced, on the root of Phaseolus vulgaris, a normal early sequence of morphogenetics events, including root hair deformation and development of nodule primordia. Later on, however, from the resulting root outgrowths, instead of nodules, one or more ectopic roots (spaced closely related and agravitropic) emerged. Therefore, this group of mutant was collectively called "root inducer" (RIND). It was observed that the RIND-induced infection threads aborted early inside the invaded root hair, and that the resulting abortive nodules lack induction of late nodulin genes. Moreover, experiments performed using a conditional mutant (a methionine-requiring invader) revealed that bacterial invasion plays a key role in the maintenance of the program of nodule development and, in particular, in the differentiation of the most specific symbiotic tissue of globose nodules, the central tissue. These data indicate that, in P. vulgaris, the nodule primordium is a root-specified pro-meristematic tissue.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
This paper has investigated the regulation of the activitiesof glutamine synthetase (GS) and NADH-dependent glutamate synthase(NADH-GOGAT) of Phaseolus vulgaris in relation to the nitrogensupply. The activity of NADH-GOGAT II, which is the most abundantisoenzyme of glutamate synthase in root nodules of P. vulgaris,was either absent or barely detectable in other organs of thisspecies. Moreover, its activity in roots could not be inducedby ammonium. In nodules NADH-GOGAT II activity was detectedin nodules grown under an atmosphere of 80% argon: 20% oxygenand in nodules formed with a Fix- Rhizobium mutant. However,in these non-fixing nodules the activity of this isoenzyme attainedless than 15% of the activity in fixing nodules and switchingargon/oxygen grown nodules to nitrogen/oxygen led to an increasein this isoenzyme within 24 h. This effect could not be mimickedby the addition of exogenous ammonium. Ammonium addition, however,promoted nodule senescence and also led to a decrease in theactivities of nitrogenase and plant GS. In particular, the nodule-enhancedGS isoenzyme but not the GSß isoenzyme was affectedby these changes and in a manner similar to the changes in NADH-GOGATII. The activity of the NADH-GOGAT I isoenzyme was detectablein other organs of P. vulgaris and in nodules its activity alsoshowed some changes in response to the rate of dinitrogen fixation. Key words: Glutamate synthase, glutamine synthetase, nitrogen fixation, nodule metabolism, Phaseolus vulgaris  相似文献   

13.
A fast, reproducible, and efficient transformation procedure employing Agrobacterium rhizogenes was developed for Phaseolus vulgaris L. wild accessions, landraces, and cultivars and for three other species belonging to the genus Phaseolus: P. coccineus, P. lunatus, and P. acutifolius. Induced hairy roots are robust and grow quickly. The transformation frequency is between 75 and 90% based on the 35-S promoter-driven green fluorescent protein and beta-glucuronidase expression reporter constructs. When inoculated with Rhizobium tropici, transgenic roots induce normal determinate nodules that fix nitrogen as efficiently as inoculated standard roots. The A. rhizogenes-induced hairy root transformation in the genus Phaseolus sets the foundation for functional genomics programs focused on root physiology, root metabolism, and root-microbe interactions.  相似文献   

14.
Cooper JB  Long SR 《The Plant cell》1994,6(2):215-225
The development of nitrogen-fixing nodules is induced on the roots of legume host plants by Rhizobium bacteria. We employed a novel strategy to probe the underlying mechanism of nodule morphogenesis in alfalfa roots using pTZS, a broad host range plasmid carrying a constitutive trans-zeatin secretion (tzs) gene from Agrobacterium tumefaciens T37. This plasmid suppressed the Nod- phenotype of Rhizobium nodulation mutants such that mutants harboring pTZS stimulated the formation of nodulelike structures. Alfalfa roots formed more or fewer of these nodules according to both the nitrogen content of the environment and the position along the root at which the pTZS+ bacteria were applied, which parallels the physiological and developmental regulation of true Rhizobium nodule formation. This plasmid also conferred on Escherichia coli cells the ability to induce root cortical cell mitoses. Both the pattern of induced cell divisions and the spatially restricted expression of an alfalfa nodule-specific marker gene (MsENOD2) in pTZS-induced nodules support the conclusion that localized cytokinin production produces a phenocopy of nodule morphogenesis.  相似文献   

15.
Two nodulation regions from the symbiotic plasmid (pSym) of Rhizobium phaseoli CE-3 were identified. The two regions were contained in overlapping cosmids pSM927 and pSM991. These cosmids, in a R. phaseoli pSym-cured strain background, induced ineffective nodules on Phaseolus vulgaris roots. Transconjugants of Rhizobium meliloti harbouring pSM991 induced nodule-like structures on bean roots, suggesting that this cosmid contains host-range determinants. Analysis of deletions and insertional mutations in the sequences of pSM991 indicated that the genes responsible for the induction and development of nodules in P. vulgaris are organized in two regions 20 kb apart. One region, located in a 6.8 kb EcoRI fragment, includes the common nodABC genes. The other region, located in a 3.5 kb EcoRI fragment, contains information required for host-range determination.  相似文献   

16.
17.
Superoxide dismutases (SODs) are metalloenzymes that play a primary role in the protection against oxidative stress in plants and other organisms. We have characterized four SOD genes in Lotus japonicus and have analyzed their expression in roots and four developmental stages of nodules. The expression of cytosolic CuZnSOD, at the mRNA, protein, and enzyme activity levels, decreases with nodule age, and the protein is localized in the dividing cells and infection threads of emergent nodules and in the infected cells of young nodules. The mitochondrial MnSOD was downregulated, whereas the bacteroidal MnSOD displayed maximal protein and enzyme activity levels in older nodules. Two additional genes, encoding plastidic (FeSOD1) and cytosolic (FeSOD2) FeSOD isoforms, were identified and mapped. The genes are located in different chromosomes and show differential expression. The FeSOD1 mRNA level did not change during nodule development, whereas FeSOD2 was upregulated. The distinct expression patterns of the SOD genes may reflect different regulatory mechanisms of the enzyme activities during nodule ontogeny. In particular, at the mRNA and activity levels, the virtual loss of cytosolic CuZnSOD in mature and old nodules, concomitant with the induction of FeSOD2, suggests that the two enzymes may functionally compensate each other in the cytosol at the late stages of nodule development.  相似文献   

18.
19.
20.
Ke D  Fang Q  Chen C  Zhu H  Chen T  Chang X  Yuan S  Kang H  Ma L  Hong Z  Zhang Z 《Plant physiology》2012,159(1):131-143
Nod Factor Receptor5 (NFR5) is an atypical receptor-like kinase, having no activation loop in the protein kinase domain. It forms a heterodimer with NFR1 and is required for the early plant responses to Rhizobium infection. A Rho-like small GTPase from Lotus japonicus was identified as an NFR5-interacting protein. The amino acid sequence of this Rho-like GTPase is closest to the Arabidopsis (Arabidopsis thaliana) ROP6 and Medicago truncatula ROP6 and was designated as LjROP6. The interaction between Rop6 and NFR5 occurred both in vitro and in planta. No interaction between Rop6 and NFR1 was observed. Green fluorescent protein-tagged ROP6 was localized at the plasma membrane and cytoplasm. The interaction between ROP6 and NFR5 appeared to take place at the plasma membrane. The expression of the ROP6 gene could be detected in vascular tissues of Lotus roots. After inoculation with Mesorhizobium loti, elevated levels of ROP6 expression were found in the root hairs, root tips, vascular bundles of roots, nodule primordia, and young nodules. In transgenic hairy roots expressing ROP6 RNA interference constructs, Rhizobium entry into the root hairs did not appear to be affected, but infection thread growth through the root cortex were severely inhibited, resulting in the development of fewer nodules per plant. These data demonstrate a role of ROP6 as a positive regulator of infection thread formation and nodulation in L. japonicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号