首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Monoclonal non-specific suppressor factor beta (MNSFbeta) is a member of the ubiquitin-like family that has been implicated in various biological functions. Previous studies have demonstrated that MNSFbeta regulates the ERK1/2-MAPK cascade in the macrophage cell line Raw 264.7. In this study, we found evidence that the flavonol quercetin regulates the effect of MNSFbeta on TNFalpha production in LPS-stimulated Raw264.7 cells. Quercetin inhibited MNSFbeta siRNA-mediated enhancement of both TNFalpha production and ERK1/2 phosphorylation in LPS-stimulated Raw264.7 cells. Quercetin decreased the expression of 33.5-kDa MNSFbeta adduct, which is important to the regulation of ERK1/2 activity, in unstimulated Raw264.7 cells. The various flavonoids tested, including other flavonols, did not affect the formation of this adduct. Collectively, MNSFbeta and quercetin might share a common pathway in regulating the ERK1/2 pathway in macrophages. This is the first report describing the involvement of flavonoids in the action of ubiquitin-like proteins.  相似文献   

2.
3.
In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, 8-hydroxyquinoline (8HQ) inhibited the LPS-induced expression of both iNOS protein and mRNA in a parallel dose-dependent manner. 8HQ did not enhance the degradation of iNOS mRNA. To investigate the mechanism by which 8HQ inhibits iNOS gene expression, we examined the activation of MAP kinases in Raw 264.7 cells. We did not observe any significant change in the phosphorylation of MAPKs between LPS alone and LPS plus 8HQ-treated cells. Moreover, 8HQ significantly inhibited the DNA-binding activity of nuclear factor-kappaB (NF-kappaB) and CCAAT/enhancer-binding protein beta (C/EBPbeta), but not activator protein-1 and cAMP response element-binding protein. Taken together, these results suggest that 8HQ acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of C/EBPbeta DNA-binding activity and NF-kappaB activation.  相似文献   

4.
The purpose of this study was to identify the role of phospholipase D2 (PLD2) in lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis. LPS enhanced NO synthesis and inducible nitric oxide synthase (iNOS) expression in macrophage cell line, Raw 264.7 cells. When Raw 264.7 cells were stimulated with LPS, the expressions of PLDs were increased. Thus, to investigate the role of PLD in NO synthesis, we transfected PLD1, PLD2, and their dominant negative forms to Raw 264.7 cells, respectively. Interestingly, only PLD2 overexpression, but not that of PLD1, increased NO synthesis and iNOS expression. Moreover, LPS-induced NO synthesis and iNOS expression were blocked by PLD2 siRNA, suggesting that LPS upregulates NO synthesis through PLD2. Next, we investigated the S6K1-p42/44 MAPK-STAT3 signaling pathway in LPS-induced NO synthesis mechanism. Knockdown of PLD2 with siRNA also decreased phosphorylation of S6K1, p42/44 MAPK and STAT3 induced by LPS. Furthermore, we found that STAT3 bound with the iNOS promoter, and their binding was mediated by PLD2. Taken together, our results demonstrate the importance of PLD2 for LPS-induced NO synthesis in Raw 264.7 cells with involvement of the S6K1-p42/44 MAPK-STAT3 pathway.  相似文献   

5.
Monoclonal nonspecific suppressor factor (MNSF) is a cytokine with antigen nonspecific suppressive activity. MNSFbeta (a subunit of MNSF) is a 14.5 kDa fusion protein consisting of a protein with 36% identity with ubiquitin and ribosomal protein S30. The ubiquitin-like segment (Ubi-L) may be cleaved from MNSFbeta in the cytosol. Recently, we have observed that Ubi-L covalently binds to intracellular proteins in mitogen-activated murine T-helper type 2 clone, D.10 cells. In this study, we purified a 33.5 kDa Ubi-L adduct from D.10 cell lysates by sequential chromatography on DEAE, anti-(Ubi-L) Ig-conjugated Sepharose, and hydroxylapatite. MALDI-TOF-MS fingerprinting revealed that this Ubi-L adduct consists of an 8.5 kDa Ubi-L and a Bcl2-like protein, murine orthologue of a previously cloned human BCL-G gene product with pro-apoptotic function. Murine Bcl-G mRNA was highly expressed in testis and significantly in spleen. In addition, the level of Bcl-G mRNA expression was increased in concanavalin A- and interferon gamma-activated D.10 cells. The 33.5 kDa Ubi-L adduct was expressed in spleen but not in testis, even though Bcl-G protein was highly expressed in this tissue. The antisense oligonucleotide to Bcl-G significantly decreased the level of the Ubi-L adduct formation in concanavalin A-activated D.10 cells and the proliferative response of the D.10 cells. These results suggest that the post-translational modification of Bcl-G by Ubi-L might be implicated in T-cell activation.  相似文献   

6.
7.
8.
Post-translational modification by monoclonal nonspecific suppressor factor β (MNSFβ) has been implicated in the regulation of a variety of cellular events. Previous studies have demonstrated that MNSFβ covalently binds to the intracellular pro-apoptotic protein Bcl-G in a macrophage cell line, Raw264.7, suggesting involvement of this ubiquitin-like protein in apoptosis. Most recently, we found that MNSFβ covalently conjugates to endophilin II, a member of the endophilin A family, and inhibits phagocytosis by macrophages. In this study, we further examined the mechanism of action of MNSFβ/endophilin II complex in the phagocytosis of zymosan. MNSFβ/endophilin II I mediated inhibition of phagocytosis in Raw264.7 cells was neutralized by anti-Decti-1, β-glucan receptor, mAb, indicating that MNSFβ/endophilin II is a mediator of Dectin-1 signaling in regulating phagocytosis. The β-glucan-dependent TNFα response to zymosan was significantly increased by the treatment with endophilin II siRNA and/or MNSFβ siRNA. Conversely, cotransfection of endophilin II and MNSFβ cDNAs inhibited the enhancement of zymosan-induced TNFα production. Interestingly, endophilin II siRNA did not affect Pam3CSK4 (TLR2 specific ligand)-induced TNFα production. Endophilin II and/or MNSFβ siRNA enhanced zymosan-induced IκBα degradation. Together, these results demonstrate that MNSFβ/endophilin II inhibits the signal pathway upstream of IKK activation, but not downstream of TLR2 signaling.  相似文献   

9.
Lactoferrin (LF) is a component of innate immunity and is known to interact with accessory molecules involved in the TLR4 pathway, including CD14 and LPS binding protein, suggesting that LF may activate components of the TLR4 pathway. In the present study, we have asked whether bovine LF (bLF)-induced macrophage activation is TLR4-dependent. Both bLF and LPS stimulated IL-6 production and CD40 expression in RAW 264.7 macrophages and in BALB/cJ peritoneal exudate macrophages. However, in macrophages from congenic TLR4(-/-) C.C3-Tlr4(lps-d) mice, CD40 was not expressed while IL-6 secretion was increased relative to wild-type cells. The signaling components NF-kappaB, p38, ERK and JNK were activated in RAW 264.7 cells and BALB/cJ macrophages after bLF or LPS stimulation, demonstrating that the TLR4-dependent bLF activation pathway utilizes signaling components common to LPS activation. In TLR4 deficient macrophages, bLF-induced activation of NF-kappaB, p38, ERK and JNK whereas LPS-induced cell signaling was absent. We conclude from these studies that bLF induces limited and defined macrophage activation and cell signaling events via TLR4-dependent and -independent mechanisms. bLF-induced CD40 expression was TLR4-dependent whereas bLF-induced IL-6 secretion was TLR4-independent, indicating potentially separate pathways for bLF mediated macrophage activation events in innate immunity.  相似文献   

10.
Post-translational modification by monoclonal nonspecific suppressor factor β (MNSFβ) has been involved in the regulation of a variety of cellular processes. Previous studies have demonstrated that MNSFβ covalently binds to the intracellular pro-apoptotic protein Bcl-G and regulates TLR-4-mediated signal transduction. Recently, we found that MNSFβ also covalently conjugates to endophilin II, a member of the endophilin A family, and inhibits the signal pathway upstream of IKK activation, but not downstream of TLR-2 signaling. In this study, we further examined the mechanism of action of MNSFβ in TLR-2-mediated signal transduction in macrophage-like cell line Raw264.7 cells. Although MNSFβ siRNA enhanced Pam(3)CDK(4) (TLR-2-specific ligand)-stimulated TNFα production, Bcl-G siRNA did not affect. MNSFβ cDNA inhibited the Pam(3)CDK(4)-stimulated TNFα production. High-molecular weight (130 kDa) MNSFβ-adduct was induced in Pam(3)CDK(4)-stimulated Raw264.7 cells. This MNSFβ-adduct was not induced by LPS, indicative of the specificity of TLR-2-mediated signal transduction. Similar observations were seen in BALB/c peritoneal macrophages. Interestingly, 40-kDa MNSFβ-adduct was tyrosine phosphorylated by Pam(3)CDK(4) stimulation. Collectively, novel MNSFβ-adducts may regulate TLR-2 signaling pathway in macrophages.  相似文献   

11.
The efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) is considered to be a result of their inhibitory effect on cyclooxygenase (COX) activity. Here, we report that flufenamic acid shows two opposing effects on COX-2 expression; it induces COX-2 expression in the colon cancer cell line (HT-29) and macrophage cell line (RAW 264.7); conversely, it inhibits tumor necrosis factor alpha (TNFalpha)- or lipopolysaccharide (LPS)-induced COX-2 expression. This inhibition correlates with the suppression of TNFalpha- or LPS-induced NFkappaB activation by flufenamic acid. The inhibitor of extracellular signal-regulated protein kinase, p38, or NFkappaB does not affect the NSAID-induced COX-2 expression. These results suggest that the NSAID-induced COX-2 expression is not mediated through activation of NFkappaB and mitogen-activated protein kinases. An activator of peroxisome proliferator-activated receptor gamma, 15-deoxy-Delta(12,14)-prostaglandin J(2), also induces COX-2 expression and inhibits TNFalpha-induced NFkappaB activation and COX-2 expression. Flufenamic acid and 15-deoxy-Delta(12,14)-prostaglandin J(2) also inhibit LPS-induced expression of inducible form of nitric-oxide synthase and interleukin-1alpha in RAW 264.7 cells. Together, these results indicate that the NSAIDs inhibit mitogen-induced COX-2 expression while they induce COX-2 expression. Furthermore, the results suggest that the anti-inflammatory effects of flufenamic acid and some other NSAIDs are due to their inhibitory action on the mitogen-induced expression of COX-2 and downstream markers of inflammation in addition to their inhibitory effect on COX enzyme activity.  相似文献   

12.
The mechanism of interleukin (IL)-10-mediated inhibition of tumor necrosis factor (TNF)-alpha production was studied by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. IL-10 inhibited TNF-alpha production transiently at an early stage after LPS stimulation. IL-10 inhibited the activation of nuclear factor (NF)-kappaB, p38 and stress-activated protein kinase (SAPK) in LPS-stimulated RAW 264.7 cells. Although the level of MyD88 protein increased in response to LPS, IL-10 prevented the LPS-induced MyD88 augmentation. There was no significant difference in the MyD88 mRNA expression between the cells pretreated with or without IL-10 in response to LPS. Therefore, IL-10 was suggested to inhibit LPS-induced TNF-alpha production via reduced MyD88 expression.  相似文献   

13.
5-Aminoimidazole-4-carboxamide riboside (AICAR) is an adenosine analog and a widely used activator of AMP-activated protein kinase (AMPK). We examined the effect of AICAR on LPS-induced TNF-alpha production in RAW 264.7 and peritoneal macrophages and its molecular mechanism in RAW 264.7 macrophages. Treatment with AICAR inhibited LPS-induced increases in TNF-alpha mRNA and protein levels in these cells. AICAR or LPS did not alter the AMPK activity as well as the phosphorylations of AMPK alpha (Thr172) and ACC (Ser79). Moreover, an adenosine kinase inhibitor 5'-iodotubercidin enhanced the suppressive effect of AICAR on TNF-alpha levels. These results suggest that the effect of AICAR on TNF-alpha suppression in RAW 264.7 cells is independent of AMPK activation. In addition, an adenosine receptor antagonist 8-SPT had no effect on AICAR-induced suppression of TNF-alpha levels. Finally, we observed that AICAR inhibited LPS-induced activation of PI 3-kinase and Akt, whereas it had no effect on the activation of p38 and ERK1/2. Taken together, these results suggest that the anti-inflammatory action of AICAR in RAW 264.7 macrophages is independent of AMPK activation and is associated with inhibition of LPS-induced activation of PI 3-kinase/Akt pathway.  相似文献   

14.
Lentinan (LNT), a β-glucan from the fruiting bodies of Lentinus edodes, is well known to have immunomodulatory activity. NO and TNF-α are associated with many inflammatory diseases. In this study, we investigated the effects of LNT extracted by sonication (LNT-S) on the NO and TNF-α production in LPS-stimulated murine RAW 264.7 macrophages. The results suggested that treatment with LNT-S not only resulted in the striking inhibition of TNF-α and NO production in LPS-activated macrophage RAW 264.7 cells, but also the protein expression of inducible NOS (iNOS) and the gene expression of iNOS mRNA and TNF-α mRNA. It is surprising that LNT-S enhanced LPS-induced NF-κB p65 nuclear translocation and NF-κB luciferase activity, but severely inhibited the phosphorylation of JNK1/2 and ERK1/2. The neutralizing antibodies of anti-Dectin-1 and anti-TLR2 hardly affected the inhibition of NO production. All of these results suggested that the suppression of LPS-induced NO and TNF-α production was at least partially attributable to the inhibition of JNK1/2 and ERK1/2 activation. This work discovered a promising molecule to control the diseases associated with overproduction of NO and TNF-α.  相似文献   

15.
16.
The objective of this study was to elucidate the role of the cellular proteasome on endotoxin-mediated activation of the macrophage. To study this role, THP-1 cells were stimulated with lipopolysaccharide (LPS) with selective cells being pretreated with the proteasome inhibitor, lactacystin or MG-132. LPS stimulation led to the phosphorylation and degradation of IRAK, followed by activation of JNK/SAPK, ERK 1/2, and p38. Subsequently, LPS induced the degradation of IkappaB, and the nuclear activation of NF-kappaB and AP-1. Activation of these pathways was associated with the production of IL-6, IL-8, IL-10, and TNF-alpha. Proteasome inhibition with either lactacystin or MG-132 attenuated LPS-induced IRAK degradation, and enhanced activation of JNK/SAPK, ERK 1/2, and p38. Proteasome inhibition, also, led to increased LPS-induced AP-1 activation, and attenuated LPS-induced IkappaB degradation resulting in abolished NF-kappaB activation. Proteasome inhibition led to significant modulation of LPS-induced cytokine production; increased IL-10, no change in IL-6, and decreased IL-8, and TNF-alpha. Thus, this study demonstrates that cellular proteasome is critical to regulation of LPS-induced signaling within the macrophage, and inhibition of the proteasome results in a conversion to an anti-inflammatory phenotype.  相似文献   

17.
In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among patients with septic encephalopathy. Using the bacterial endotoxin lipopolysaccharide (LPS) to induce neuroinflammation in primary neuron/glia cocultures, we investigated how L-ascorbate (vitamin C; Vit. C) affected neuroinflammation. LPS (100 ng/ml) induced the expression of inducible NO synthase (iNOS) and the production of NO, interleukin (IL)-6, and macrophage inflammatory protein-2 (MIP-2/CXCL2) in a time-dependent manner; however, cotreatment with Vit. C (5 or 10 mM) attenuated the LPS-induced iNOS expression and production of NO, IL-6, and MIP-2 production. The morphological features revealed after immunocytochemical staining confirmed that Vit. C suppressed LPS-induced astrocytic and microglial activation. Because Vit. C can be transported into neurons and glia via the sodium-dependent Vit. C transporter-2, we examined how Vit. C affected LPS-activated intracellular signaling in neuron/glia cocultures. The results indicated the increased activation (caused by phosphorylation) of mitogen-activated protein kinases (MAPKs), such as p38 at 30 min and extracellular signal-regulated kinases (ERKs) at 180 min after LPS treatment. The inhibition of p38 and ERK MAPK suppressed the LPS-induced production of inflammatory mediators. Vit. C also inhibited the LPS-induced activation of p38 and ERK. Combined treatments of Vit. C and the inhibitors of p38 and ERK yielded no additional inhibition compared with using the inhibitors alone, suggesting that Vit. C functions through the same signaling pathway (i.e., MAPK) as these inhibitors. Vit. C also reduced LPS-induced IκB-α degradation and NF-κB translocation. Thus, Vit. C suppressed the LPS-stimulated production of inflammatory mediators in neuron/glia cocultures by inhibiting the MAPK and NF-κB signaling pathways.  相似文献   

18.
Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure.  相似文献   

19.
The effect of D-galactosamine (D-GalN) on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was examined. D-GalN augmented the production of NO, but not tumor necrosis factor (TNF)-alpha in LPS-stimulated RAW 264.7 cells. Pretreatment of D-GalN augmented the NO production whereas its post-treatment did not. D-GalN augmented the NO production in RAW 264.7 cells stimulated with either TNF-alpha and interferon-gamma. The augmentation of LPS-induced NO production by D-GalN was due to enhanced expressions of an inducible type of NO synthase mRNA and proteins. Intracellular reactive oxygen species (ROS) were exclusively generated in RAW 264.7 cells stimulated with D-GalN and LPS. Scavenging of intracellular ROS abrogated the augmentation of NO production. It was therefore suggested that D-GalN might augment LPS-induced NO production through the generation of intracellular ROS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号