首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have previously shown that the acute stimulation of glucose transport in Clone 9 cells in response to azide is mediated by activation of Glut1 and that stomatin, a Glut1-binding protein, appears to inhibit Glut1 function. In Clone 9 cells under basal conditions, 38% of Glut1, 70% of stomatin, and the bulk of caveolin-1 was localized in the detergent-resistant membrane (DRM) fraction; a significant fraction of Glut1 is also present in DRMs of 3T3-L1 fibroblasts and human red blood cells (RBCs). Acute exposure to azide resulted in 40 and 50% decreases in the content of Glut1 in DRMs of Clone 9 cells and 3T3-L1 fibroblasts, respectively, whereas the distribution of stomatin and caveolin-1 in Clone 9 cells remained unchanged. In addition, treatment of Clone 9 cells with azide resulted in a 50% decrease in the content of Glut1 in the DRM fraction of plasma membranes. We conclude that 1) a significant fraction of Glut1 is localized in DRMs, and 2) treatment of cells with azide results in a partial redistribution of Glut1 out of the DRM fraction. stomatin; caveolin-1; transferrin receptor; sucrose density fractionation; lipid raft  相似文献   

2.
Bagchi  D.  Carryl  O.R.  Tran  M.X.  Bagchi  M.  Garg  A.  Milnes  M.M.  Williams  C.B.  Balmoori  J.  Bagchi  D.J.  Mitra  S.  Stohs  S.J. 《Molecular and cellular biochemistry》1999,194(1-2):109-116
To determine the role of translocation vs. activation of Glut1 in the stimulation of glucose transport in response to inhibition of oxidative phosphorylation, we measured the abundance of myc-tagged Glut1 in plasma membrane of stably transfected Clone 9 cells, a rat liver cell line expressing only the Glut1 isoform. The myc epitope-tag is located between Ile56 and Pro57 in the putative first extracellular loop of Glut1. Under basal conditions, transfected cells expressed ~3 fold higher levels of Glut1 and exhibited a ~3 fold higher rate of glucose transport than non-transfected cells. To delineate the mechanism mediating the stimulation of glucose transport by a azide we employed two strategies: (1) mild cell surface biotinylation followed by isolation of plasma membranes and quantitation of Glut1 sites in Western blots employing anti-Glut1 and anti-myc antibodies, and (2) quantitative immunofluorescence of myc epitopes in plasma membrane sheets. The rate of glucose transport increased 2.9 ± 0.5 fold in transfected cells exposed to 5 mM azide for 1 h. Exposure to azide, however, resulted in no significant increase in Glut1 content of plasma membranes using anti-Glut1 or anti-myc antibodies in Western blots (1.0 ± 0.1 and 0.9 ± 0.2 fold, respectively; azide/control), and was associated with no detectable increase in immunofluorescence using either anti-Glut1 or anti-myc antibodies (p > 0.1 for both measurements). Treatment of cells with cobalt chloride (employed as a positive control) resulted in marked increases in glucose transport, cell and plasma membrane Glut1 content, and immunofluorescence of plasma membrane sheets (8-10 fold increase in each parameter). We conclude that the stimulation of glucose transport by azide results mainly from activation of Glut1 transporters pre-existing in the plasma membrane.  相似文献   

3.
We have previously shown that exposure of Clone 9 cells to hypoxia, cyanide, or azide results in an acute stimulation of glucose transport that is largely mediated by "activation" of glucose transporter (Glut1) sites preexisting in the plasma membrane. However, it is not known whether inhibition of oxidative phosphorylation only at its terminal step, or at any of its steps, leads to the glucose transport response. Hence, the effect of azide (5 mM), rotenone (1 microM), rotenone (1 microM) plus thenoyltrifluoroacetone (TTFA) (5 microM), antimycin A (0.3 microM), dinitrophenol (0.25 mM), carbonyl cyanide m-chlorophenylhydrazone (CCCP) (2.5 microM), and oligomycin B (0.15 microM) on glucose transport was determined. All of the above agents elicited a similar approximately 4-fold stimulation of cytochalasin B (CB)-inhibitable 3-O-methyl glucose (3-OMG) uptake in Clone 9 cells. The stimulatory effect of azide on 3-OMG uptake was not inhibited by antioxidants 2-mercaptopropionyl glycine (1.2 mM) and 1,10-phenanthroline (40 microM), while, in contrast, the antioxidants attenuated the stimulation of glucose transport in response to 250 microM H(2)O(2) by approximately 50%. To differentiate between an increase in the number of functional Glut1 sites in the plasma membrane (in the absence of "translocation") versus an increase in the "intrinsic activity" of Glut1, the effect of azide on the energy of activation (E(a)) of glucose transport was measured. The E(a) was determined by measuring the rate of CB-inhibitable 3-OMG uptake at 24.0, 28.0, 35. 0, and 40 degrees C. The E(a) of control Clone 9 cells and of cells exposed to 10 mM azide for 2 h was 32,530 +/- 1830 and 31,220 +/- 600 J/mol, respectively (P > 0.1), while the rate of CB-inhibitable 3-OMG uptake was 9.3 +/- 0.7-fold higher in azide-treated cells. It is concluded that (i) inhibition of oxidative phosphorylation, at any of its steps, leads to a stimulation of glucose transport, and (ii) the mechanism of stimulation of glucose transport in response to azide appears to be predominately mediated by an apparent increase in the number of functional Glut1 sites in the plasma membrane (instead of an increase in their "intrinsic activity"), suggesting an "unmasking" mechanism.  相似文献   

4.
Employing subcellular membrane fractionation methods it has been shown that insulin induces a 2-fold increase in the Glut 4 protein content in the plasma membrane of skeletal muscle from rats. Data based upon this technique are, however, impeded by poor plasma membrane recovery and cross-contamination with intracellular membrane vesicles. The present study was undertaken to compare the subcellular fractionation technique with the technique using [3H]ATB-BMPA exofacial photolabelling and immunoprecipitation of Glut 4 on soleus muscles from 3-week-old Wistar rats. Maximal insulin stimulation resulted in a 6-fold increase in 3-O-methylglucose uptake, and studies based on the subcellular fractionation method showed a 2-fold increase in Glut 4 content in the plasma membrane, whereas the exofacial photolabelling demonstrated a 6- to 7-fold rise in cell surface associated Glut 4 protein. Glucose transport activity was positively correlated with cell surface Glut 4 content as estimated by exofacial labelling. In conclusion: (1) the increase in glucose uptake in muscle after insulin exposure is caused by an augmented concentration of Glut 4 protein on the cell surface membrane, (2) at maximal insulin stimulation (20 mU/ml) approximately 40% of the muscle cell content of Glut 4 is at the cell surface, and (3) the exofacial labelling technique is more sensitive than the subcellular fractionation technique in measuring the amount of glucose transporters on muscle cell surface.  相似文献   

5.
In the renal collecting duct, vasopressin controls transport of water and solutes via regulation of membrane transporters such as aquaporin-2 (AQP2) and the epithelial urea transporter UT-A. To discover proteins potentially involved in vasopressin action in rat kidney collecting ducts, we enriched membrane "raft" proteins by harvesting detergent-resistant membranes (DRMs) of the inner medullary collecting duct (IMCD) cells. Proteins were identified and quantified with LC-MS/MS. A total of 814 proteins were identified in the DRM fractions. Of these, 186, including several characteristic raft proteins, were enriched in the DRMs. Immunoblotting confirmed DRM enrichment of representative proteins. Immunofluorescence confocal microscopy of rat IMCDs with antibodies to DRM proteins demonstrated heterogeneity of raft subdomains: MAL2 (apical region), RalA (predominant basolateral labeling), caveolin-2 (punctate labeling distributed throughout the cells), and flotillin-1 (discrete labeling of large intracellular structures). The DRM proteome included GPI-anchored, doubly acylated, singly acylated, cholesterol-binding, and integral membrane proteins (IMPs). The IMPs were, on average, much smaller and more hydrophobic than IMPs identified in non-DRM-enriched IMCD. The content of serine 256-phosphorylated AQP2 was greater in DRM than in non-DRM fractions. Vasopressin did not change the DRM-to-non-DRM ratio of most proteins, whether quantified by tandem mass spectrometry (LC-MS/MS, n = 22) or immunoblotting (n = 6). However, Rab7 and annexin-2 showed small increases in the DRM fraction in response to vasopressin. In accord with the long-term goal of creating a systems-level analysis of transport regulation, this study has identified a large number of membrane-associated proteins expressed in the IMCD that have potential roles in vasopressin action.  相似文献   

6.
Field stimulation of isolated adult ventricular cardiomyocytes was used to study the effect of contractile activity on 3-O-methylglucose transport and the subcellular distribution of Glut4. Cells contracting at a frequency of 1 Hz for 30 min exhibited unaltered basal and insulin-stimulated rates of glucose transport when compared to resting cells. However, at 5 Hz 3-O-methylglucose transport increased to 224% of control after 5 min. Under these conditions insulin was unable to produce a significant additional stimulation of glucose transport. Immunoblotting with an anti-Glut4 polyclonal antibody showed that both insulin and contraction (5 Hz) increased the amount of Glut4 in a plasma membrane fraction by about 8-fold with a parallel decrease in an intracellular membrane fraction by 60-65%. These data suggest the existence of an identical insulin- and contraction-recruitable Glut4 transporter pool in cardiomyocytes.  相似文献   

7.
Microdomains known as "rafts" have been isolated from many cell types as detergent-resistant membranes (DRMs) and are enriched in sphingolipids and cholesterol. However, there has been considerable controversy over whether such domains are found in native membranes or are artificially generated by the purification procedure. This controversy is based at least in part on the fact that raft membranes were first detected following detergent extraction in the cold. We isolated two plasma membrane fractions, without detergent treatment, using a discontinuous sucrose density gradient. One fraction was designated "light" and the other "heavy." These fractions were compared with DRMs, which were isolated in the presence of 1% Triton X-100. We found that Xenopus DRMs are enriched with sphingomyelin and cholesterol and exhibit a phase state similar to the liquid-ordered phase. Comparison of DRM complexes with the light and heavy plasma membrane fractions revealed some physical and biochemical similarities between the light fraction of the plasma membrane and the DRM complexes, based on (1) the phosphatidylcholine/sphingomyelin ratio and (2) the protein composition visualized on a two-dimensional gel. These two fractions are also quite similar in their thermotropic phase behavior, and their high levels of ganglioside GM1. We conclude that the light membrane fraction isolated in a detergent-free environment has many of the characteristics normally associated with DRMs.  相似文献   

8.
Exposure of 3T3-L1 adipocytes to 100 ng/ml of cholera toxin or 1 mM dibutyryl cyclic AMP caused a marked stimulation of deoxyglucose transport. A maximal increase of 10- to 15-fold was observed after 12-24 h of exposure, while 100 nM insulin elicited an increase of similar magnitude within 30 min. A short term exposure (4 h) of cells to cholera toxin or dibutyryl cyclic AMP resulted in a 3- to 4-fold increase in deoxyglucose transport which was associated with significant redistribution of both the HepG2/erythrocyte (GLUT1) and muscle/adipocyte (GLUT4) glucose transporters from low density microsomes to the plasma membrane fraction. Total cellular amounts of both transporter proteins remained constant. In contrast, cells exposed to cholera toxin or dibutyryl cyclic AMP for 12 h exhibited elevations in total cellular contents of GLUT1 (but not GLUT4) protein to about 1.5- and 2.5-fold above controls, respectively. Although such treatments of cells with cholera toxin (12 h) versus insulin (30 min) caused similar 10-fold enhancements of deoxyglucose transport, a striking discrepancy was observed with respect to the content of glucose transporter proteins in the plasma membrane fraction. While insulin elicited a 2.6-fold increase in the levels of GLUT4 protein in the plasma membrane fraction, cholera toxin increased the amount of this transporter by only 30%. Insulin or cholera toxin increased the levels of GLUT1 protein in the plasma membrane fraction equally (1.6-fold). Thus, a greater number of glucose transporters in the plasma membrane fraction is associated with transport stimulation by insulin compared to cholera toxin. We conclude that: 1) at early times (4 h) after the addition of cholera toxin or dibutyryl cyclic AMP to 3T3-L1 adipocytes, redistribution of glucose transporters to the plasma membrane appears to contribute to elevated deoxyglucose uptake rates, and 2) the stimulation of hexose uptake after prolonged treatment (12-18 h) of cells with cholera toxin may involve an additional increase in the intrinsic activity of one or both glucose transporter isoforms.  相似文献   

9.
AMP-activated protein kinase (AMPK) plays a critical role in the stimulation of glucose transport in response to hypoxia and inhibition of oxidative phosphorylation. In the present study, we examined the signaling pathway(s) mediating the glucose transport response following activation of AMPK. Using mouse fibroblasts of AMPK wild type and AMPK knockout, we documented that the expression of AMPK is essential for the glucose transport response to both azide and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). In Clone 9 cells, the stimulation of glucose transport by a combination of azide and AICAR was not additive, whereas there was an additive increase in the abundance of phosphorylated AMPK (p-AMPK). In Clone 9 cells, AMPK wild-type fibroblasts, and H9c2 heart cells, azide or hypoxia selectively increased p-ERK1/2, whereas, in contrast, AICAR selectively stimulated p-p38; phosphorylation of JNK was unaffected. Azide's effect on p-ERK1/2 abundance and glucose transport in Clone 9 cells was partially abolished by the MEK1/2 inhibitor U0126. SB 203580, an inhibitor of p38, prevented the phosphorylation of p38 and the glucose transport response to AICAR and, unexpectedly, to azide. Hypoxia, azide, and AICAR all led to increased phosphorylation of Akt substrate of 160 kDa (AS160) in Clone 9 cells. Employing small interference RNA directed against AS160 did not inhibit the glucose transport response to azide or AICAR, whereas the content of P-AS160 was reduced by approximately 80%. Finally, we found no evidence for coimmunoprecipitation of Glut1 and p-AS160. We conclude that although azide, hypoxia, and AICAR all activate AMPK, the downstream signaling pathways are distinct, with azide and hypoxia stimulating ERK1/2 and AICAR stimulating the p38 pathway.  相似文献   

10.
Lipid rafts are microdomains enriched in cholesterol and sphingolipids that contain specific membrane proteins. The resistance of domains to extraction by nonionic detergents at 4°C is the commonly used method to characterize these structures that are operationally defined as detergent-resistant membranes (DRMs). Because the selectivity of different detergents in defining membrane rafts has been questioned, we have compared DRMs from human erythrocytes prepared with two detergents: Triton X-100 and C12E8. The DRMs obtained presented a cholesterol/protein mass ratio three times higher than in the whole membrane. Flotillin-2 was revealed in trace amounts in DRMs obtained with C12E8, but it was almost completely confined within the DRM fraction with Triton X-100. Differently, stomatin was found distributed in DRM and non-DRM fractions for both detergents. We have also measured the order parameter (S) of nitroxide spin labels inserted into DRMs by means of electron paramagnetic resonance. The 5- and 16-stearic acid spin label revealed significantly higher S values for DRMs obtained with either Triton X-100 or C12E8 in comparison to intact cells, while the difference in the S values between Triton X-100 and C12E8 DRMs was not statistically significant. Our results suggest that although the acyl chain packing is similar in DRMs prepared with either Triton X-100 or C12E8 detergent, protein content is dissimilar, with flotillin-2 being selectively enriched in Triton X-100 DRMs.  相似文献   

11.
Employing a monoclonal antibody directed against the C-terminal peptide of glucose transporter molecule 1 (Glut1), we identified a approximately 30-kDa polypeptide which coimmunoprecipitated with Glut1 from sample of human red blood cells (RBC) membranes. The approximately 30-kDa polypeptide reacted with an antibody directed against stomatin, an integral plasma membrane protein which is also present at a high abundance in the human RBC plasma membrane. Likewise, employing anti-stomatin antibody, we found that Glut1 coimmunoprecipitated with stomatin from samples of RBC membranes. However, neither band 3, which is the most abundant integral membrane protein in the RBC, nor actin coimmunoprecipitated with Glut1, indicating a specific interaction between Glut1 and stomatin. Similar to the results obtained in the RBC, Glut1 and stomatin immunoprecipitated with each other in lysates of Clone 9 cells, a rat liver cell line in which Glut1 is expressed at approximately 1/200 the level present in RBC. Employing conditions that resulted in immunoprecipitation of approximately 10% of Glut1 in RBC membranes led to a approximately 3% coimmunoprecipitation of stomatin. A mixed population of Clone 9 cells stably transfected with a plasmid overexpressing the mouse stomatin exhibited 30 +/- 3% reduction in the basal rate of glucose transport compared to control cells or cells stably transfected with the empty vector. The above results suggest that stomatin is closely associated with Glut1 in the plasma membrane and that overexpression of stomatin results in a depression in the basal rate of glucose transport.  相似文献   

12.
13.
Insulin stimulates glucose transport in adipocytes and muscle by inducing the redistribution of Glut4 from intracellular locations to the plasma membrane. The fusion of Glut4-containing vesicles at the plasma membrane is known to involve the target SNAREs syntaxin 4 and SNAP-23 and the vesicle SNARE VAMP2. Little is known about the initial docking of Glut4 vesicles with the plasma membrane. A recent report has implicated Exo70, a component of the mammalian exocyst complex, in the initial interaction of Glut4 vesicles with the adipocyte plasma membrane. Here, we have examined the role of two other exocyst components, rsec6 and rsec8. We show that insulin promotes a redistribution of rsec6 and rsec8 to the plasma membrane and to cytoskeletal fractions within 3T3-L1 adipocytes but does not modulate levels of these proteins co-localized with Glut4. We further show that adenoviral-mediated overexpression of either rsec6 or rsec8 increases the magnitude of insulin-stimulated glucose transport in 3T3-L1 adipocytes. By contrast, overexpression of rsec6 or rsec8 did not increase the extent of the secretion of adipsin or ACRP30 from adipocytes and had no discernible effect on transferrin receptor traffic. Collectively, our data support a role for the exocyst in insulin-stimulated glucose transport and suggest a model by which insulin-dependent relocation of the exocyst to the plasma membrane may contribute to the specificity of Glut4 vesicle docking and fusion with the adipocyte plasma membrane.  相似文献   

14.
Glucose transport activity and its possible regulation by reactive oxygen species in two Glut1-expressing megakaryocytic cell lines, MO7e and B1647, differing in cytokine sensitivity were compared. Results show that: (1) In MO7e cells, glucose transport rate increased in response to thrombopoietin, granulocyte-macrophage colony-stimulating factor, or stem cell factor, due to a decreased Km. (2) A higher Vmax value was determined in B1647 cells, owing to the relative higher abundance of Glut1 on the plasmalemma; in these cells no change in glucose transport rate was observed on cytokine treatment. (3) The basal level of intracellular ROS was higher in B1647 than in M07e cells, where ROS production was enhanced upon cytokine exposure. (4) Basal or stimulated ROS production and Glut1 activity were significantly reduced by pretreating both cell lines with EUK-134, a superoxide dismutase and catalase mimetic. (5) In MO7e cells, EUK-134 brought back to control levels the Km values obtained on cytokine treatment, whereas in B1647 cells the antioxidant drastically reduced Vmax by decreasing the Glut1 content of the plasma membrane. Our data suggest that differences in acute regulation of glucose transport activity in the two cell lines may be related to differences in amplitude and spatial organization of ROS production.  相似文献   

15.
Insulin stimulates glucose transport into adipocytes, at least in part, via the translocation of intracellular transporters to the plasma membrane. The human HepG2-type transporter, which is not insulin-responsive in its native cell type, was expressed in 3T3-L1 adipocytes by infection with recombinant retrovirus harboring the HepG2 transporter cDNA in order to determine whether glucose transporter translocation in adipocytes is restricted to a distinct insulin-sensitive transporter species. The distributions of the endogenous murine and the HepG2 transporters were estimated by quantitative immunoblot analysis of subcellular fractions probed with either a monoclonal antibody that recognized only the human transporter or a polyclonal antibody that recognized both transporter species. In the basal state, the intracellular membrane fraction comprised approximately 50% of the total of each transporter type. Insulin decreased the content of both transporter species in the intracellular membranes by approximately 50% and increased the plasma membrane content of both species by approximately 1.5-2-fold. The similar insulin-mediated increase in the plasma membrane content of endogenous murine and HepG2 glucose transporters was verified by labeling of cell surface glycoproteins with [3H]NaBH4 followed by immunoprecipitation with glucose transporter antibodies. These data indicate that insulin-mediated translocation in 3T3-L1 adipocytes is not restricted to a tissue-specific insulin-responsive glucose transporter species and suggest that other tissue-specific factors regulate the translocation process.  相似文献   

16.
The basal and plus insulin states of glucose transport activity in adipocytes are known to show different responses to changes in the pH or osmolarity of the incubation mixture. When the pH was raised from 7 to 8, the basal glucose transport activity (assessed from the rate of 3-O-methyl-D-glucose uptake) was increased approximately 3-fold while the plus insulin activity remained virtually unaffected. Likewise, when cells were exposed to 300 mM sorbitol, the basal glucose transport activity, but not the plus insulin activity, was considerably increased. In both cases, the change in the transport activity was ATP-dependent and was completed in approximately 60 min. The increase in the cellular glucose transport activity was accompanied, in both cases, by an increase in the glucose transport activity in the plasma membrane fraction and a decrease in the activity in the high-speed pellet fraction. The transport activity in the subcellular fractions was determined after reconstitution into egg lecithin liposomes. Both isotonic buffer at pH 8.0 and hypertonic buffer at pH 7.4 significantly stimulated membrane-bound cAMP phosphodiesterase in adipocytes. It is concluded that the above two experimental conditions may induce insulin-like effects in fat cells and may facilitate translocation of the glucose transport activity from an intracellular site to the plasma membrane.  相似文献   

17.
We have investigated epidermal growth factor (EGF)‐induced compartmentalization and activation of the EGF receptor (EGFR) in rat liver plasma membrane (PM) raft subfractions prepared by three different biochemical methods previously developed to characterize the composition of membrane rafts. Only detergent‐resistant membranes (DRMs) possessed the basic characteristics attributed to membrane rafts. Following the administration of a low dose of EGF (1 µg/100 g BW) the content of EGFR in PM–DRMs did not change significantly; whereas after a higher dose of EGF (5 µg/100 g BW) we observed a rapid and marked disappearance of EGFR (around 80%) from both PM and DRM fractions. Interestingly, following the administration of either a low or high dose of EGF, the pool of EGFR in the PM–DRM fraction became highly Tyr‐phosphorylated. In accordance with the higher level of EGFR Tyr‐Phosphorylation, EGF induced an augmented recruitment of Grb2 and Shc proteins to PM–DRMs compared with whole PM. Furthermore neither high nor low doses of EGF affected the caveolin content in DRMs and PM. These observations suggest that EGFR located in DRMs are competent for signaling, and non‐caveolae PM rafts are involved in the compartmentalization and internalization of the EGFR. J. Cell. Biochem. 107: 96–103, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (approximately 5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane.  相似文献   

19.
Triiodothyronine (T3) is found to stimulate cytochalasin B-inhibitable glucose transport in Clone 9 cells, a 'non-transformed' rat liver cell line. After an initial lag period of more than 3 h, glucose transport rate is significantly increased at 6 h and reaches more than 3-times the control rate at 24 h. The enhancement of glucose transport by T3 is due to an increase in transport Vmax and occurs in the absence of a change in either the Km for glucose transport (approximately 3 mM) or the Ki for inhibition of transport by cytochalasin B ((1-2).10(-7) M). Consistent with the observed Ki for cytochalasin B, Northern blot analysis of RNA from control and T3-treated cells employing cDNA probes encoding GTs of the human erythrocyte/rat brain/HepG2 cell transporter (GLUT-1), rat muscle/fat cell transporter (GLUT-4), and rat liver transporter (GLUT-2) types indicates expression of only the GLUT-1 mRNA isoform in these cells. The abundance of GLUT-1 mRNA increases approx. 1.9-fold after 24 h of T3 treatment and is accompanied by an approx. 1.3-fold increase in the abundance of GLUT-1 in whole-cell extracts as demonstrated by Western blot analysis employing a polyclonal antibody directed against the 13 amino acid C-terminal peptide of GLUT-1. The more than 3-fold stimulation of glucose transport at 24 h substantially exceeds the fractional increment in transporter abundance suggesting that, in addition to increasing total GLUT-1 abundance, exposure to T3 may result in a translocation of transporters to the plasma membrane or an activation of pre-existing membrane transporter sites.  相似文献   

20.
Insulin-stimulates glucose transport in peripheral tissues by stimulating the movement ('translocation') of a pool of intracellular vesicles containing the glucose transporter Glut4 to the cell surface. The fusion of these vesicles with the plasma membrane results in a large increase in the numbers of Glut4 molecules at the cell surface and a concomitant enhancement of glucose uptake. It is well established that proteins of the VAMP- (synaptobrevin) and syntaxin-families play a fundamental role in the insulin-stimulated fusion of Glut4-containing vesicles with the plasma membrane. Studies have identified key roles for vesicle associated membrane protein-2 (VAMP2) and syntaxin-4 in this event, and more recently have also implicated SNAP-23 and Munc18c in this process. In this study, we have quantified the absolute levels of expression of these proteins in murine 3T3-L1 adipocytes, with the objective of determining the stoichiometry of these proteins both relative to each other and also in comparison with previous estimates of Glut4 levels within these cells. To achieve this, we performed quantitative immunoblot analysis of these proteins in 3T3-L1 membranes compared to known amounts of purified recombinant proteins. Such analyses suggest that in 3T3-L1 adipocytes there are approximately 374,000 copies of syntaxin 4, 1.15 x 10(6) copies of SNAP23, 495,000 copies of VAMP2, 4.3 x 10(6) copies of cellubrevin and 452,000 copies of Munc18c per cell, compared to previous estimates of 280,000 copies of Glut4. Thus, the main SNARE proteins involved in insulin-stimulated Glut4 exocytosis (syntaxin 4 and VAMP2) are expressed in approximately equimolar amounts in adipocytes, whereas by contrast the endosomal v-SNARE cellubrevin is present at approximately 10-fold higher levels and the t-SNARE SNAP-23 is also present in an approximately 3-fold molar excess. The implications of this quantification for the mechanism of insulin-stimulated Glut4 translocation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号