首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In the course of the search for N2O-utilizing microorganisms, two novel strains of haloalkaliphilic denitrifying bacteria, Z-7009 and AIR-2, were isolated from soda lakes of Mongolia and Kenya. These microorganisms are true alkaliphiles and grow in the pH ranges of 8.0–10.5 and 7.5–10.6, respectively. They are facultative anaerobes with an oxidative type of metabolism, able to utilize a wide range of organic substrates and reduce nitrate, nitrous oxide, and, to a lesser extent, nitrite to gaseous nitrogen. They can oxidize sulfide in the presence of acetate as the carbon source and nitrous oxide (strain Z-7009) or nitrate (strain AIR-2) as the electron acceptor. The strains require Na+ ions. They grow at 0.16–2.2 M Na+ (Z-7009) and 0.04–2.2 M Na+ (AIR-2) in the medium. The G+C contents of the DNA of strains Z-7009 and AIR-2 are 67.9 and 65.5 mol %, respectively. According to the results of 16S rRNA gene sequencing and DNA-DNA hybridization, as well as on the basis of physiological properties, the strains were classified as new species of the genus Halomonas: Halomonas mongoliensis, with the type strain Z-7009T (=DSM 17332, =VKM B2353), and Halomonas kenyensis, with the type strain AIR-2T (=DSM 17331, =VKM B2354).  相似文献   

2.
Two strains, asporogenous Z-7940 and sporogenous Z-7939, of a moderately haloalkaliphilic, obligately anaerobic, fermentative bacteria, motile, with Gram-positive cell wall structure, were isolated from soda deposits in Lake Magadi, Kenya. Both strains are mesophilic and utilize only two amino acids, histidine and glutamate, with formation of acetate and ammonium as the main end products. Strain Z-7939 in addition is able to utilize pyruvate. DNA-DNA homology between strains Z-7940 and Z-7939 was 94%, indicating that in spite of phenotypic differences they belong to the same species. They are true alkaliphiles with a pH range for growth of the type strain Z-7940 from pH 8.0 to pH 10.5, optimum at pH 9.4. Both strains obligately depend on sodium and bicarbonate ions. The optimum salt concentration for growth of the type strain is 8–10% wt/vol and the range from 4% to 16%. The G+C content of strain Z-7940 is 31.9 mol% and the strain Z-7939 is 32.3 mol%. Analysis of 16S rDNA sequence of the type strain shows it to belong to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and physiological properties, we propose a new genus and new species Natronoincola histidinovorans for these strains. The type strain is Z-7940 (=DSM 11416). Received: 5 March 1998 / Accepted: 3 April 1998  相似文献   

3.
We isolated eight strains of denitrifying bacteria that reduce nitrate and nitrous oxide at pH 10 from Lake Magadi (Kenya). Despite certain differences between the strains, they are similar in terms of G+C content (66.1-68.1 mol %) and DNA-DNA homology (75-92%) and represent different morphotypes of the same species. Based on the results of partial 16S rRNA sequencing, strain Z-7398-2 was most closely related to the Halomonas campisalis isolate from Alkali Lake (USA). The DNA-DNA homology level between the tested strain and the type strain of H. campisalis 4A was 88%. These two strains were also similar phenotypically. However, the culture isolated by us was characterized by peculiar properties, such as obligate alkaliphily, which manifested itself in the culture dependence on carbonates and lack of growth at pH values below 7, a nitrous oxide-reducing capacity, and an unusual nitrate reductase that lacked molybdenum and a Mo cofactor.  相似文献   

4.
Two novel strains of obligately alkaliphilic (pH 7.5–10.2, optimum pH 8.4–8.8) anaerobic spore-forming rod-shaped bacteria, Z-0511 and Z-7031, were isolated from enrichment cultures obtained from the iron-reducing (Lake Khadyn, Tyva) and cellulolytic (Lake Verkhnee Beloe, Buryatia) bacterial communities, respectively. The organisms ferment peptides and do not ferment proteins and amino acids, with the exception of histidine and glutamate utilized by strain Z-0511. The major fermentation products were acetate and propionate for strain Z-0511 and formate and acetate for strain Z-7031, respectively. Carbohydrates and fermentable organic acids could not serve as substrates, except for pyruvate in the case of strain Z-7031. Nitrogen and sulfur compounds were not utilized as electron acceptors by the strains grown on medium with yeast extract. Strain Z-0511 utilized fumarate, crotonate, and EDTA-Fe(III) as electron acceptors. Anthraquinone-2,6-disulfonate (quinone) and Mn(IV) were utilized by both strains, as well as amorphous ferric hydroxide (AFH), which was reduced to iron sesquioxides and magnetite. The presence of AFH stimulated growth; it enhanced the yield of the fermentation products and changed the quantitative ratios of these products. According to a phylogenetic analysis of the 16S rRNA gene sequences and the phenotypic characteristics of the new strains, they were classified as new species of the genus Natronincola, Natronincola ferrireducens sp. nov. Z-0511T (= VKM B-2402, = DSM 18346) and Natronincola peptidovorans sp. nov. Z-7031T (= VKM B-2503, = DSM 18979).  相似文献   

5.
6.
A halotolerant and alkaliphilic Gram-negative bacterium, strain 18bAG(T), that grows aerobically at the optimum temperature of 37 degrees C, and at pH 7.5-10 (optimum 9.0), was isolated from a salt pool located in Montefredane in Campania Region (South of Italy). The isolate tolerated high concentration of NaCl up to 20%. Strain 18bAG(T) accumulated osmolytes and polyhydroxybutyrate, produced exopolysaccharide and possessed alpha-glucosidase activity. The predominant respiratory quinones were ubiquinones, Q8 and Q6(6H); phosphoethanolamine, phosphatidylglycerol and diphosphatidylglycerol were the predominant polar lipids. Major fatty acids were C16 : 1, C16 : 0, and C18 : 0. On the basis of 16S rRNA gene sequence similarity, 18bAG(T) was shown to belong to Halomonas genus. Analysis of 16S rRNA gene revealed a high similarity of strain 18bAG(T) to Halomonas venusta (DSM 4743(T)) and Halomonas hydrothermalis (DSM 15725(T)). Level of DNA-DNA relatedness between strain 18bAG(T) and the most related species Halomonas venusta and Halomonas hydrothermalis was 56.0% and 41.2%, respectively. The G+C content (mol%) of DNA was 53.0. The RiboPrinting patterns of Halomonas venusta and 18AG(T) showed a pattern similarity of 0.50. On the basis of genomic information and phenotypic characteristics strain 18bAG(T) represents a new species, for which the name Halomonas alkaliphila sp. nov. is proposed. The type strain is 18bAG(T) (=DSM 16354T =ATCC BAA-953T).  相似文献   

7.
A moderately halophilic bacterial strain 15-13(T), which was isolated from soda meadow saline soil in Daqing City, Heilongjiang Province, China, was subjected to a polyphasic taxonomic study. The cells of strain 15-13 were found to be Gram-negative, rod-shaped, and motile. The required growth conditions for strain 15-13(T) were: 1-23% NaCl (optimum, 7%), 10-50°C (optimum, 35°C), and pH 7.0-11.0 (optimum, pH 9.5). The predominant cellular fatty acids were C(18:1) ω7c (60.48%) and C(16:0) (13.96%). The DNA G+C content was 67.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons indicated that strain 15-13(T) clustered within a branch comprising species of the genus Halomonas. The closest phylogenetic neighbor of strain 15-13(T) was Halomonas pantelleriensis DSM 9661(T) (98.9% 16S rRNA gene sequence similarity). The level of DNA-DNA relatedness between the novel isolated strain and H pantelleriensis DSM 9661(T) was 33.8%. On the basis of the phenotypic and phylogenetic data, strain 15-13(T) represents a novel species of the genus Halomonas, for which the name Halomonas alkalitolerans sp. nov. is proposed. The type strain for this novel species is 15-13(T) (=CGMCC 1.9129(T) =NBRC 106539(T)).  相似文献   

8.
New alkaliphilic, saccharolytic, rod-shaped, gram-positive bacteria resistant to heating and drying and phylogenetically affiliated to the Bacillus lineage were isolated under strictly anaerobic conditions from sediments of the alkaline and highly mineralized Lake Magadi. Strain Z-7792 forms endospores; in strain Z-7984, endospore formation was not revealed. The strains are capable of both anaerobic growth (at the expense of fermentation of glucose and certain mono- and disaccharides with the formation of formate, ethanol, and acetate) and aerobic growth. Among polysaccharides, the strains hydrolyze starch, glycogen, and xylan. Yeast extract or methionine are required for growth. The strains are strict alkaliphiles exhibiting obligate requirement for Na+ and carbonate ions but not for Cl- ion. Growth occurs at a total mineralization as high as 3.3-3.6 M Na+, with an optimum at 1-1.7 M Na+. Strain Z-7792 is an obligate alkaliphile with a pH growth range of 8.5-11.5 and an optimum of 9.5-9.7. Strain Z-7984 grows in a pH range of 7.0-10.5 with an optimum at 8.0-9.5. Both strains are mesophiles having a growth optimum at 37-38 degrees C. They belong to bacilli with a low G + C content. The G + C contents of the DNA of strains Z-7792 and Z-7984 are 39.2 and 41.5 mol%, respectively. These isolates of facultatively anaerobic, strictly alkaliphilic, Na(+)-dependent bacilli can be considered representatives of the ecological group adapted to the life at drying-up shoars of soda lakes. Because of their independence of NaCl and lack of obligate dependence on sodium carbonates, the isolates are to be assigned to athalassophilic organisms. According to their physiological and phylogenetic characteristics, they taxonomically belong to group 1 of the species of bacilli, occupying a position intermediate between the genera Amphibacillus and Gracilibacillus. The isolates are described as new species of Amphibacillus: A. fermentum (type strain, Z-7984T) and A. tropicus (type strain, Z-7792T).  相似文献   

9.
Two Gram-negative moderately halophilic bacterial strains, designated Ad-1(T) and C-12, were isolated from Aiding salt lake of Xinjiang in China. The novel isolates were subjected to a polyphasic taxonomic study. Cells of these strains were cocci or short rods and motile with polar flagella. Colonies produced brown-red pigment. The isolates grew in the range of 0.5-25% (w/v) NaCl, pH 5.5-10.5 and 4-45°C. Analysis of their 16S rRNA gene sequences indicated that strains Ad-1(T) and C-12 belonged to the genus Halomonas showing 92.7-98.4% similarity with the type species. The isoprenoid quinones of the isolates were Q-9 and Q-8. The major cellular fatty acids were C18:1ω7c, C16:1ω7c/6c, C16:0, C12:0-3OH and C10:0. The DNA G + C contents of strains Ad-1(T) and C-12 were 64.6 and 63.9 mol%, respectively. The DNA relatedness between the two isolates was 89.2%. The similarities of these newly isolated strains with closely related type strains were lower than 35% at the genetic level. Based on phenotypic, chemotaxonomic and genetic characteristics, the representative strain Ad-1(T) is considered to be a novel species of the genus Halomonas, for which the name Halomonas aidingensis sp. nov. is proposed, with Ad-1(T) (= CGMCC 1.10191(T) = NBRC 106173(T)) as the type strain.  相似文献   

10.
Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8-9.5, with an optimum at pH 9.3 and in a temperature range of 5-39 degrees C, with an optimum at 28-32 degrees C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3-64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21-29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).  相似文献   

11.
The isolation and characterization of a denitrifying bacterium that is both moderately halophilic and alkaliphilic is described. The organism was isolated for use in the development of a bioprocess that could potentially reduce the costs of ion exchange resin regenerant disposal. The process of ion exchange, after resin regeneration, produces a briny, alkaline waste that is difficult and expensive to dispose. The biological removal of nitrate and subsequent reuse of these brines can potentially provide a cost-saving alternative to disposing of this waste product. To achieve our objective, a moderately halophilic, alkaliphilic bacterium was isolated from sediment samples taken from the salt plain of Alkali Lake in Washington State (USA). The haloalkaliphilic bacterium, designated strain 4A, is motile with rod-shaped cells that are 3 to 5 microm long and 1 microm wide. Electron acceptors used include oxygen, nitrate, and nitrite. In addition, it has similar specific nitrate reduction rates and biomass yields as non-halophilic denitrifying bacteria. It is capable of using a variety of electron donors. This organism can grow at NaCl concentrations ranging from 0.2 to 4.5 M with optimum growth occurring at 1.5 M and pH values ranging from 6 to 12 with 9.5 being the optimum pH. The temperature range for growth of strain 4A is 4-50 degrees C with optimal growth occurring at 30 degrees C. The G + C content is 66 mol%. Phylogenetic analyses based upon 16S rDNA gene sequence placed isolate 4A in the genus Halomonas. In addition, DNA-DNA hybridization experiments clearly indicate that it is a unique species. Phenotypic and phylogenetic studies indicate that isolate 4A represents a new species. We propose the name Halomonas campisalis for this species and strain 4A (ATCC 700597) as the type strain. Due to its denitrification ability, broad carbon utilization range and its high salinity and pH tolerance this organism, and similar ones, hold promise for the treatment of saline, alkaline waste.  相似文献   

12.
13.
Two Gram-stain negative, moderately halophilic, aerobic, motile bacteria, designated strains YIM QH88T and YIM QH103, were isolated from the Qiaohou salt mine in Yunnan, southwest China. Cells of the strains were observed to be rod-shaped and produce creamy-coloured colonies. Growth of the two strains was observed at 10–45 °C (optimum 25–37 °C), at pH 6.0–10.0 (optimum 7.0–8.0), and in the presence of 0.5–20 % (w/v) NaCl (optimum 2–6 %). The two strains were found to contain summed feature 8 (C18:1 ω7c/ω6c), C19:0 cyclo ω8c and C16:0 as the major cellular fatty acids. The polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unknown phospholipid. The G+C content of the genomic DNA of strains YIM QH88T and YIM QH103 were determined to be 64.6 and 64.2 mol%, respectively, and the predominant respiratory quinone detected was ubiquinone 9. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains YIM QH88T and YIM QH103 formed a distinct lineage within the genus Halomonas and were most closely related to Halomonas pantelleriensis DSM 9661T with 97.3 and 97.5 % of 16S rRNA sequence similarity respectively. The DNA–DNA hybridization relatedness value for strains YIM QH88T and YIM QH103 was 95.2 ± 0.8 %. The levels of DNA–DNA relatedness between each of these two strains and the type strains of phylogenetically closely related Halomonas species were clearly below 70 %. On the basis of their phylogenetic analysis, DNA–DNA hybridization relatedness, phenotypic and chemotaxonomic characteristics, strains YIM QH88T and YIM QH103 should be classified as a novel species of the genus Halomonas, for which the name Halomonas qiaohouensis sp. nov. is proposed. The type strain is YIM QH88T (=DSM 26770T =CCTCC AB 2012965T).  相似文献   

14.
New alkaliphilic anaerobic fermentative bacteria, strains Z-7981 and Z-7981', with Gram-positive cell walls, were isolated from the cellulolytic community from the soda lake Nizhnee Beloye, south-east of Baikal. Cells were motile rods, which differed in dimensions but, according to 98% DNA/DNA homology, belonged to the same species. Strain Z-7981 was chosen as the type and studied in detail. It did not produce spores and its cells were non-thermoresistant. It was a true alkaliphile with a growth range from pH 7.1 to pH 10.1 and optimal pH for growth at pH 9.1. It was obligately dependent on Na(+) and carbonate ions but not on Cl(-). Growth occurred in media with total sodium content from 0.076 M to 1.27 M Na(+ )with a broad optimum from 0.25 to 0.86 M Na(+). Growth showed an optimum at 35 degrees C, with absence of growth above 46 degrees C. The organism was aerotolerant and was capable of fermentation in non-reducing medium at less than 4.75% O(2) in the gas phase. Strain Z-7981 fermented mono- and disaccharides, sugar alcohols, but only glutamate and cysteine among the amino acids, and the proteinaceous substrates, chitin and dried Spirulina biomass. Fermentation products were acetate and ethanol. Fe(3+) was reduced in a process that yielded no energy. Phylogenetically the new organism belonged to cluster XI of the Gram-positive bacteria with low G+C content and its closest neighboring taxon was Tindallia magadiensis. However, according to its phenotypic and genotypic characters it did not belong to any known genus from this group. We suggest a new genus and species with the name Anoxynatronum sibiricum and strain Z-7981 as its type (=DSM15060).  相似文献   

15.
A novel type of a sulfate-reducing microorganism, represented by strain Na82T, was isolated from a hot spring in Narugo, Japan. The isolate was a moderate thermophilic autotroph that was able to grow on H2/CO2 by sulfate respiration. The isolate could grow with nitrate in place of sulfate, and possessed menaquinone-7 and menaquinone-7(H2) as respiratory quinones. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Na82T was a member of the domain Bacteria and distant from any known bacteria, as well as from other sulfate-reducing bacteria (sequence similarities less than 80%). The phylogenetic analysis of the dsrAB gene (alpha and beta subunits of dissimilatory sulfite reductase) sequence also suggested that strain Na82T was not closely related to other sulfate reducers. On the basis of the phenotypic and phylogenetic data, a new taxon is established for the isolate. We proposed the name Thermodesulfobium narugense gen. nov., sp. nov. with strain Na82T (=DSM 14796T=JCM 11510T) as the type strain. Furthermore, a new family, Thermodesulfobiaceae fam. nov., is proposed for the genus.  相似文献   

16.
A Gram-negative, aerobic, motile and rod-shaped haloalkaliphilic bacterial strain 5AGT (DSM 15293 and ATCC BAA-966) was isolated from water with algal mat of a mineral pool in Malvizza site (Campania-Italy) and was subjected to a polyphasic study. The isolate grew at temperature of 10.0-43.0 degrees C with an optimum at 37.0 degrees C. Strain 5AGT grew optimally in the presence of 10% NaCl and grew also in the absence of salt. The isolate grew in the pH range 7.0-10.0 with an optimum at pH 9.0. It accumulated glycine-betaine, ectoine, and glutamate, as osmoprotectants. Strain 5AGT was also characterized chemotaxonomically by having ubiquinone-8 (Q8) as the predominant isoprenoid quinone, phosphoethanolamine (PEA), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG), as major polar lipids and aiC16:0 and C18:1cis as the major fatty acids. The DNA G+C content was 63.7mol%. Phylogenetic analyses based on 16S rRNA gene sequence showed that the isolate belonged to the genus Halomonas. The DNA-DNA hybridization of the type strain 5AGT with the most related Halomonas campisalis showed a re-association value of 35.0%.On the basis of phenotypic properties and phylogeny, strain 5AGT should be placed in the genus Halomonas as a member of a novel species for which we propose the name Halomonas campaniensis sp. nov.  相似文献   

17.
Two novel strains of budding bacteria, Z-0071T and Z-0072, were isolated from dystrophic humified waters formed by xylotrophic fungi in the course of spruce wood degradation. The cells of both strains are coccoid (0.95–1.80 μm), nonmotile, single or arranged in pairs. The cells have a complex system of intracellular membranes and are covered with fimbriae and surrounded by a mucous capsule up to 0.3 μm thick. Both strains are aerobic organoheterotrophic, mesophilic, and acid-tolerant microorganisms that are able to grow under microaerobic conditions. They utilize N-acetyl-glucosamine, carbohydrates, and lactate as growth substrates. The strains grow in a pH range of 4.0–7.5 with an optimum at 6.0–6.5. The temperature range for growth is 4–30°C, with an optimum at 25–28°C. Strains Z-0071T and Z-0072, inhabitants of dystrophic low-mineral waters, are NaCl-sensitive: the NaCl content in the media above 0.5 g/l inhibited growth. The main fatty acids of strains Z-0071T and Z-0072 are C16:0, C18:1ω9c, and C18:2ω9c, 12c. The DNA G + C base content is 51.2–51.7 mol %. The sequences of the 16S rRNA gene fragments (1310 bp) of strains Z-0071T and Z-0072 were found to be identical. The obtained sequences showed a 94.3% similarity with the sequences of the type strain of the most closely related species Singulisphaera acidiphila MOB10≅T. The phenotypic and phylogenetic properties of strains Z-0071T and Z-0072 support classification of these strains within the genus Singulisphaera as a new species Singulisphaera mucilagenosa sp. nov., with the type strain Z-0071T (VKM B-2626).  相似文献   

18.
Phenotypic and phylogenetic studies were performed on two myxobacterial strains, SMP-2 and SMP-10, isolated from coastal regions. The two strains are morphologically similar, in that both produce yellow fruiting bodies, comprising several sessile sporangioles in dense packs. They are differentiated from known terrestrial myxobacteria on the basis of salt requirements (2-3% NaCl) and the presence of anteiso-branched fatty acids. Comparative 16S rRNA gene sequencing studies revealed that SMP-2 and SMP-10 are genetically related, and constitute a new cluster within the myxobacteria group, together with the Polyangium vitellinum Pl vt1 strain as the closest neighbor. The sequence similarity between the two strains is 95.6%. Based on phenotypic and phylogenetic evidence, it is proposed that these two strains be assigned to a new genus, Haliangium gen. nov., with SMP-2 designated as Haliangium ochraceum sp. nov. (= JCM 11303(T) = DSM 14365(T)), and SMP-10 as Haliangium tepidum sp. nov. (= JCM 11304(T)= DSM 14436(T)).  相似文献   

19.
Eight strains of Gram-negative, aerobic, asporogenous, neutrophilic, mesophilic, facultatively methylotrophic bacteria are taxonomically described. These icl- serine pathway methylobacteria utilize dichloromethane, methanol and methylamine as well as a variety of polycarbon compounds as the carbon and energy source. The major cellular fatty acids of the non-pigmented strains DM1, DM3, and DM5 to DM9 are C18:1, C16:0, C18:0, Ccy19:0 and that of the pink-pigmented strain DM4 is C18:1. The main quinone of all the strains is Q-10. The non-pigmented strains have similar phenotypic properties and a high level of DNA-DNA relatedness (81-98%) as determined by hybridization. All strains belong to the alpha-subgroup of the alpha-Proteobacteria. 16S rDNA sequence analysis led to the classification of these dichloromethane-utilizers in the genus Methylopila as a new species - Methylopila helvetica sp.nov. with the type strain DM9 (=VKM B-2189). The pink-pigmented strain DM4 belongs to the genus Methylobacterium but differs from the known members of this genus by some phenotypic properties, DNA-DNA relatedness (14-57%) and 16S rDNA sequence. Strain DM4 is named Methylobacterium dichloromethanicum sp. nov. (VKM B-2191 = DSMZ 6343).  相似文献   

20.
Strain Z-7934, an alkaliphilic, obligately anaerobic, fermentative, asporogenous bacterium with Gram-positive cell wall structure, was isolated from soda deposits in Lake Magadi, Kenya. The organism ferments only a few amino acids, preferentially arginine and ornithine, with production of acetate, propionate, and ammonia. It is a true alkaliphile, with pH range for growth ranging from 7.5 to 10.5 (optimum pH 8.5), and growth is dependent on the presence of sodium ions. The G+C content of the genomic DNA is 37.6 mol%. 16S rDNA sequence analysis of strain Z-7934 shows that it belongs phylogenetically to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and unique physiological properties, we propose a new genus and new species, Tindallia magadii, for this strain. The type strain is Z-7934T (=DSM 10318). Received: 5 January 1998 / Accepted: 5 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号