首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367–606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients’ lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.  相似文献   

2.
正Dear Editor,Middle East respiratory syndrome coronavirus (MERS-CoV), first isolated in 2012, has emerged zoonotically among humans (van Boheemen et al. 2012). Since then,MERS-CoV continues to be a public health concern, with a fatality rate of 35%. On-going MERS-CoV outbreaks highlight the urgent need for the development of inter-  相似文献   

3.
Middle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic stability and growth characteristics of MVA-MERS-S make it a suitable candidate vaccine for clinical testing. Vaccinated mice produced high levels of serum antibodies neutralizing MERS-CoV. Thus, MVA-MERS-S may serve for further development of an emergency vaccine against MERS-CoV.  相似文献   

4.
5.
The development of an effective vaccine is critical for prevention of a Middle East respiratory syndrome coronavirus (MERS-CoV) pandemic. Some studies have indicated the receptor-binding domain (RBD) protein of MERS-CoV spike (S) is a good candidate antigen for a MERS-CoV subunit vaccine. However, highly purified proteins are typically not inherently immunogenic. We hypothesised that humoral and cell-mediated immunity would be improved with a modification of the vaccination regimen. Therefore, the immunogenicity of a novel MERS-CoV RBD-based subunit vaccine was tested in mice using different adjuvant formulations and delivery routes. Different vaccination regimens were compared in BALB/c mice immunized 3 times intramuscularly (i.m.) with a vaccine containing 10 µg of recombinant MERS-CoV RBD in combination with either aluminium hydroxide (alum) alone, alum and polyriboinosinic acid (poly I:C) or alum and cysteine-phosphate-guanine (CpG) oligodeoxynucleotides (ODN). The immune responses of mice vaccinated with RBD, incomplete Freund’s adjuvant (IFA) and CpG ODN by a subcutaneous (s.c.) route were also investigated. We evaluated the induction of RBD-specific humoral immunity (total IgG and neutralizing antibodies) and cellular immunity (ELISpot assay for IFN-γ spot-forming cells and splenocyte cytokine production). Our findings indicated that the combination of alum and CpG ODN optimized the development of RBD-specific humoral and cellular immunity following subunit vaccination. Interestingly, robust RBD-specific antibody and T-cell responses were induced in mice immunized with the rRBD protein in combination with IFA and CpG ODN, but low level of neutralizing antibodies were elicited. Our data suggest that murine immunity following subunit vaccination can be tailored using adjuvant combinations and delivery routes. The vaccination regimen used in this study is promising and could improve the protection offered by the MERS-CoV subunit vaccine by eliciting effective humoral and cellular immune responses.  相似文献   

6.
Rapid and reliable laboratory diagnosis of persons suspected of Middle East respiratory syndrome coronavirus (MERS-CoV) infection is important for timely implementation of infection control practices and disease management. In addition, monitoring molecular changes in the virus can help elucidate chains of transmission and identify mutations that might influence virus transmission efficiency. This was illustrated by a recent laboratory investigation we conducted on an imported MERS-CoV case in Greece. Two oropharyngeal swab specimens were collected on the 1st and 2nd day of patient hospitalization and tested using two real-time RT-PCR (rRT-PCR) assays targeting the UpE and Orf-1a regions of the MERS-CoV genome and RT-PCR and partial sequencing of RNA-dependent RNA polymerase and nucleocapsid genes. Serum specimens were also collected and serological test were performed. Results from the first swab sample were inconclusive while the second swab was strongly positive for MERS-CoV RNA by rRT-PCR and confirmed positive by RT-PCR and partial gene sequencing. Positive serologic test results further confirmed MERS-CoV infection. Full-length nucleocapsid and spike gene coding sequences were later obtained from the positive swab sample. Phylogenetic analysis revealed that the virus was closely related to recent human-derived MERS-CoV strains obtained in Jeddah and Makkah, Saudi Arabia, in April 2014 and dromedary camels in Saudi Arabia and Qatar. These findings were consistent with the patient’s history. We also identified a unique amino acid substitution in the spike receptor binding domain that may have implications for receptor binding efficiency. Our initial inconclusive rRT-PCR results highlight the importance of collecting multiple specimens from suspect MERS-CoV cases and particularly specimens from the lower respiratory tract.  相似文献   

7.
The ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to infect small animal species may be restricted given the fact that mice, ferrets, and hamsters were shown to resist MERS-CoV infection. We inoculated rabbits with MERS-CoV. Although virus was detected in the lungs, neither significant histopathological changes nor clinical symptoms were observed. Infectious virus, however, was excreted from the upper respiratory tract, indicating a potential route of MERS-CoV transmission in some animal species.  相似文献   

8.
9.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly emerging human pathogen that was first isolated in 2012. MERS-CoV replication depends in part on a virus-encoded papain-like protease (PLpro) that cleaves the viral replicase polyproteins at three sites releasing non-structural protein 1 (nsp1), nsp2, and nsp3. In addition to this replicative function, MERS-CoV PLpro was recently shown to be a deubiquitinating enzyme (DUB) and to possess deISGylating activity, as previously reported for other coronaviral PLpro domains, including that of severe acute respiratory syndrome coronavirus. These activities have been suggested to suppress host antiviral responses during infection. To understand the molecular basis for ubiquitin (Ub) recognition and deconjugation by MERS-CoV PLpro, we determined its crystal structure in complex with Ub. Guided by this structure, mutations were introduced into PLpro to specifically disrupt Ub binding without affecting viral polyprotein cleavage, as determined using an in trans nsp3↓4 cleavage assay. Having developed a strategy to selectively disable PLpro DUB activity, we were able to specifically examine the effects of this activity on the innate immune response. Whereas the wild-type PLpro domain was found to suppress IFN-β promoter activation, PLpro variants specifically lacking DUB activity were no longer able to do so. These findings directly implicate the DUB function of PLpro, and not its proteolytic activity per se, in the inhibition of IFN-β promoter activity. The ability to decouple the DUB activity of PLpro from its role in viral polyprotein processing now provides an approach to further dissect the role(s) of PLpro as a viral DUB during MERS-CoV infection.  相似文献   

10.
A novel human Middle East respiratory syndrome coronavirus (MERS-CoV) caused outbreaks of severe acute respiratory syndrome (SARS)-like illness with a high mortality rate, raising concerns of its pandemic potential. Dipeptidyl peptidase-4 (DPP4) was recently identified as its receptor. Here we showed that residues 377 to 662 in the S protein of MERS-CoV specifically bound to DPP4-expressing cells and soluble DPP4 protein and induced significant neutralizing antibody responses, suggesting that this region contains the receptor-binding domain (RBD), which has a potential to be developed as a MERS-CoV vaccine.  相似文献   

11.
The geographic spread and rapid increase in the cases of Middle East respiratory syndrome (MERS) caused by a novel coronavirus (MERS-CoV) during the past two months have raised concern about its pandemic potential. Here we call for the rapid development of an effective and safe MERS vaccine to control the spread of MERS-CoV.  相似文献   

12.
Francisella tularensis (FT) is a highly virulent pathogen for humans and other mammals. Severe morbidity and mortality is associated with respiratory FT infection and there are concerns about intentional dissemination of this organism. Therefore, FT has been designated a category A biothreat agent and there is a growing interest in the development of a protective vaccine. In the present study, we determine the protective potential of a subunit vaccine comprised of the FT heat shock protein DnaK and surface lipoprotein Tul4 against respiratory infection with the live vaccine strain (LVS) of FT in mice. First, we establish an optimal intranasal immunization regimen in C57BL/6 mice using recombinant DnaK or Tul4 together with the adjuvant GPI-0100. The individual immunization regimens induced robust salivary IgA, and vaginal and bronchoalveolar IgA and IgG antigen-specific antibodies. Serum IgG1 and IgG2c antibody responses were also induced, indicative of a mixed type 2 and type 1 response, respectively. Next, we show that immunization with DnaK and Tul4 induces mucosal and systemic antibody responses that are comparable to that seen following immunization with each antigen alone. This immunization regimen also induced IFN-γ, IL-10 and IL-17A production by splenic CD4+ T cells in an antigen-specific manner. Importantly, over 80% of the mice immunized with DnaK and Tul4, but not with each antigen alone, were protected against a lethal respiratory challenge with FT LVS. Protection correlated with reduced bacterial burden in the lung, liver and spleen of mice. This study demonstrates the potential of DnaK and Tul4 as protective antigens and lends support to the notion of combining distinct, immunodominant antigens into an effective multivalent tularemia vaccine.  相似文献   

13.
Respiratory syncytial virus (RSV) is an important cause of acute lower respiratory tract disease in infants, young children, immunocompromised individuals, and the elderly. However, despite ongoing efforts to develop an RSV vaccine, there is still no authorized RSV vaccine for humans. Baculovirus has attracted attention as a vaccine vector because of its ability to induce a high level of humoral and cellular immunity, low cytotoxicity against various antigens, and biological safety for humans. In this study, we constructed a recombinant baculovirus- based vaccine expressing the M2 protein of RSV under the control of cytomegalovirus promoter (Bac_RSVM2) to induce CD8+ T-cell responses which play an important role in viral clearance, and investigated its protective efficacy against RSV infection. Immunization with Bac_RSVM2 via intranasal or intramuscular route effectively elicited the specific CD8+ T-cell responses. Most notably, immunization with Bac_RSVM2 vaccine almost completely protected mice from RSV challenge without vaccine-enhanced immunopathology. In conclusion, these results suggest that Bac_RSVM2 vaccine employing the baculovirus delivery platform has promising potential to be developed as a safe and novel RSV vaccine that provides protection against RSV infection.  相似文献   

14.

The Middle East respiratory syndrome-related coronavirus (MERS-CoV) contains four major structural proteins, the spike glycoprotein, nucleocapsid phosphoprotein, membrane (M) glycoprotein and small envelope glycoprotein. The M protein of MERS-CoV has a role in the morphogenesis or assembly of the virus and inhibits type I interferon expression in infected cells. Here, we produced a monoclonal antibody specific against the M protein of MERS-CoV by injecting BALB/c mice with a complex containing the epitope peptide and CpG–DNA encapsulated with a phosphatidyl-β-oleoyl-γ-palmitoyl ethanolamine (DOPE):cholesterol hemisuccinate (CHEMS). The monoclonal antibody was reactive to the epitope peptide of the M protein of MERS-CoV which was confirmed by western blotting and immunoprecipitations. Indirect immunofluorescence assay and confocal image analysis showed that the monoclonal antibody binds specifically to the M protein of MERS-CoV in the virus-infected cells. Further studies using this monoclonal antibody may provide important information on the function of the M protein and its future application in diagnostics.

  相似文献   

15.
Middle East respiratory syndrome coronavirus (MERS-CoV) with pandemic potential is a major worldwide threat to public health. However, vaccine development for this pathogen lags behind as immunity associated with protection is currently largely unknown. In this study, an immunoinformatics-driven genome-wide screening strategy of vaccine targets was performed to thoroughly screen the vital and effective dominant immunogens against MERS-CoV. Conservancy and population coverage analysis of the epitopes were done by the Immune Epitope Database. The results showed that the nucleocapsid (N) protein of MERS-CoV might be a better protective immunogen with high conservancy and potential eliciting both neutralizing antibodies and T-cell responses compared with spike (S) protein. Further, the B-cell, helper T-cell and cytotoxic T lymphocyte (CTL) epitopes were screened and mapped to the N protein. A total of 15 linear and 10 conformal B-cell epitopes that may induce protective neutralizing antibodies were obtained. Additionally, a total of 71 peptides with 9-mer core sequence were identified as helper T-cell epitopes, and 34 peptides were identified as CTL epitopes. Based on the maximum HLA binding alleles, top 10 helper T-cell epitopes and CTL epitopes that may elicit protective cellular immune responses against MERS-CoV were selected as MERS vaccine candidates. Population coverage analysis showed that the putative helper T-cell epitopes and CTL epitopes could cover the vast majority of the population in 15 geographic regions considered where vaccine would be employed. The B- and T-cell stimulation potentials of the screened epitopes is to be further validated for their efficient use as vaccines against MERS-CoV. Collectively, this study provides novel vaccine target candidates and may prompt further development of vaccines against MERS-CoV and other emerging infectious diseases.  相似文献   

16.

Backgrounds

A new highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and Saudi Arabia and quickly spread to some European countries since September 2012. Until 15 May 2014, it has infected at least 572 people with a fatality rate of about 30% globally. Studies to understand the virus and to develop antiviral drugs or therapy are necessary and urgent. In the present study, MERS-CoV papain-like protease (PLpro) is expressed, and its structural and functional consequences are elucidated.

Results

Circular dichroism and Tyr/Trp fluorescence analyses indicated that the secondary and tertiary structure of MERS-CoV PLpro is well organized and folded. Analytical ultracentrifugation analyses demonstrated that MERS-CoV PLpro is a monomer in solution. The steady-state kinetic and deubiquitination activity assays indicated that MERS-CoV PLpro exhibits potent deubiquitination activity but lower proteolytic activity, compared with SARS-CoV PLpro. A natural mutation, Leu105, is the major reason for this difference.

Conclusions

Overall, MERS-CoV PLpro bound by an endogenous metal ion shows a folded structure and potent proteolytic and deubiquitination activity. These findings provide important insights into the structural and functional properties of coronaviral PLpro family, which is applicable to develop strategies inhibiting PLpro against highly pathogenic coronaviruses.  相似文献   

17.
Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a severe respiratory disease with a high mortality of ~ 35%. The lack of approved treatments for MERS-CoV infection underscores the need for a user-friendly system for rapid drug screening. In this study, we constructed a MERS-CoV replicon containing the Renilla luciferase (Rluc) reporter gene and a stable luciferase replicon-carrying cell line. Using this cell line, we showed that MERS-CoV replication was inhibited by combined application of lopinavir and ritonavir, indicating that this cell line can be used to screen inhibitors of MERS-CoV replication. Importantly, the MERS-replicon cell line can be used for high-throughput screening of antiviral drugs without the need for live virus handling, providing an effective and safe tool for the discovery of antiviral drugs against MERS-CoV.  相似文献   

18.
Middle East Respiratory syndrome (MERS) first emerged in Saudi Arabia in 2012 and remains a global health concern. The objective of this study was to compare the clinical features and risk factors for adverse outcome in patients with RT-PCR confirmed MERS and in those with acute respiratory disease who were MERS-CoV negative, presenting to the King Fahad Medical City (KFMC) in Riyadh between October 2012 and May 2014. The demographics, clinical and laboratory characteristics and clinical outcomes of patients with RT-PCR confirmed MERS-CoV infection was compared with those testing negative MERS-CoV PCR. Health care workers (HCW) with MERS were compared with MERS patients who were not health care workers. One hundred and fifty nine patients were eligible for inclusion. Forty eight tested positive for MERS CoV, 44 (92%) being hospital acquired infections and 23 were HCW. There were 111 MERS-CoV negative patients with acute respiratory illnesses included in this study as “negative controls”. Patient with confirmed MERS-CoV infection were not clinically distinguishable from those with negative MERS-CoV RT-PCR results although diarrhoea was commoner in MERS patients. A high level of suspicion in initiating laboratory tests for MERS-CoV is therefore indicated. Variables associated with adverse outcome were older age and diabetes as a co-morbid illness. Interestingly, co-morbid illnesses other than diabetes were not significantly associated with poor outcome. Health care workers with MERS had a markedly better clinical outcome compared to non HCW MERS patients.  相似文献   

19.
Equine influenza viruses (EIV)—H3N8 continue to circulate in equine population throughout the world. They evolve by the process of antigenic drift that leads to substantial change in the antigenicity of the virus, thereby necessitating substitution of virus strain in the vaccines. This requires frequent testing of the new vaccines in the in vivo system; however, lack of an appropriate laboratory animal challenge model for testing protective efficacy of equine influenza vaccine candidates hinders the screening of new vaccines and other therapeutic approaches. In the present investigation, BALB/c mouse were explored for suitability for conducting pathogenecity studies for EIV. The BALB/c mice were inoculated intranasally @ 2×106.24 EID50 with EIV (H3N8) belonging to Clade 2 of Florida sublineage and monitored for setting up of infection and associated parameters. All mice inoculated with EIV exhibited clinical signs viz. loss in body weights, lethargy, dyspnea, etc, between 3 and 5 days which commensurate with lesions observed in the respiratory tract including rhinitis, tracheitis, bronchitis, bronchiolitis, alveolitis and diffuse interstitial pneumonia. Transmission electron microscopy, immunohistochemistry, virus quantification through titration and qRT-PCR demonstrated active viral infection in the upper and lower respiratory tract. Serology revealed rise in serum lactate dehydrogenase levels along with sero-conversion. The pattern of disease progression, pathological lesions and virus recovery from nasal washings and lungs in the present investigations in mice were comparable to natural and experimental EIV infection in equines. The findings establish BALB/c mice as small animal model for studying EIV (H3N8) infection and will have immense potential for dissecting viral pathogenesis, vaccine efficacy studies, preliminary screening of vaccine candidates and antiviral therapeutics against EIV.  相似文献   

20.
Coronavirus (CoV) infections are commonly associated with respiratory and enteric disease in humans and animals. In 2012, a new human disease called Middle East respiratory syndrome (MERS) emerged in the Middle East. MERS was caused by a virus that was originally called human coronavirus-Erasmus Medical Center/2012 but was later renamed as Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV causes high fever, cough, acute respiratory tract infection, and multiorgan dysfunction that may eventually lead to the death of the infected individuals. The exact origin of MERS-CoV remains unknown, but the transmission pattern and evidence from virological studies suggest that dromedary camels are the major reservoir host, from which human infections may sporadically occur through the zoonotic transmission. Human to human transmission also occurs in healthcare facilities and communities. Recent studies on Middle Eastern respiratory continue to highlight the need for further understanding the virus-host interactions that govern disease severity and infection outcome. In this review, we have highlighted the major mechanisms of immune evasion strategies of MERS-CoV. We have demonstrated that M, 4a, 4b proteins and Plppro of MERS-CoV inhibit the type I interferon (IFN) and nuclear factor-κB signaling pathways and therefore facilitate innate immune evasion. In addition, nonstructural protein 4a (NSP4a), NSP4b, and NSP15 inhibit double-stranded RNA sensors. Therefore, the mentioned proteins limit early induction of IFN and cause rapid apoptosis of macrophages. MERS-CoV strongly inhibits the activation of T cells with downregulation of antigen presentation. In addition, uncontrolled secretion of interferon ɣ-induced protein 10 and monocyte chemoattractant protein-1 can suppress proliferation of human myeloid progenitor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号