首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pigmentary function and evolution of tyrp1 gene duplicates in fish   总被引:1,自引:0,他引:1  
The function of the tyrosinase‐related protein 1 (Tyrp1) has not yet been investigated in vertebrates basal to tetrapods. Teleost fishes have two duplicates of the tyrp1 gene. Here, we show that the teleost tyrp1 duplicates have distributed the ancestral gene expression in the retinal pigment epithelium (RPE) and melanophores in a species‐specific manner. In medaka embryos, tyrp1a expression is found in the RPE and in melanophores while tyrp1b is only expressed in melanophores. In zebrafish embryos, expression of tyrp1 paralogs overlaps in the RPE and in melanophores. Knockdown of each zebrafish tyrp1 duplicate alone does not show pigmentary defects, but simultaneous knockdown of both tyrp1 genes results in the formation of brown instead of black eumelanin accompanied by severe melanosome defects. Our study suggests that the brown melanosome color in Tyrp1‐deficient vertebrates is an effect of altered eumelanin synthesis. Black eumelanin formation essentially relies on the presence of Tyrp1 and some of its function is most likely conserved from the common ancestor of bony vertebrates.  相似文献   

2.
The albino (tyrosinase, Tyrc), brown (tyrosinase‐related protein 1, Tyrp1b) and slaty (tyrosinase‐related protein 2, tyrp2slt) loci are all involved in the regulation of melanogenesis. Phenotypes of inbred mice mutant at two or more of these loci are not always explicable by simple summation of the established or suspected catalytic functions of the gene products. These phenotypes suggest that relationships among the proteins extend beyond the obvious fact that they catalyze different steps in the same melanogenic pathway, and that they may also interact intimately in such a way that a mutation in one impacts the function of the other(s). Previous studies have attributed catalytic activities to each member of this trio; however, it has been difficult to study the proteins individually, either in vivo or in tissues or cells. Therefore, we undertook to transfect the genes, in revealing combinations, into COS‐7 cells (which have no melanogenic apparatus of their own) to clarify the interacting functions of their encoded proteins. Specifically, we attempted to evaluate the effects of Tyrp1 and Tyrp2 proteins on tyrosinase protein. We report evidence that Tyrp1 stabilizes tyrosinase, confirming previous observations, and, in addition, demonstrate that Tyrp1 decreases tyrosinase activity. By contrast, Tyrp2 increases tyrosinase activity by stabilizing the protein. We conclude that both Tyrp1 and Tyrp2, in addition to other catalytic functions they may possess, act together to modulate tyrosinase activity.  相似文献   

3.
Melanin biosynthesis in vertebrates depends on the function of three enzymes of the tyrosinase family, tyrosinase (Tyr), tyrosinase‐related protein 1 (Tyrp1), and dopachrome tautomerase (Dct or Tyrp2). Tyrp1 might play an additional role in the survival and proliferation of melanocytes. Here, we describe a mutation in tyrp1A, one of the two tyrp1 paralogs in zebrafish, which causes melanophore death leading to a semi‐dominant phenotype. The mutation, an Arg‐>Cys change in the amino‐terminal part of the protein, is similar to mutations in humans and mice where they lead to blond hair (in melanesians) or dark hair with white bases, respectively. We demonstrate that the phenotype in zebrafish depends on the presence of the mutant protein and on melanin synthesis. Ultrastructural analysis shows that the melanosome morphology and pigment content are altered in the mutants. These structural changes might be the underlying cause for the observed cell death, which, surprisingly, does not result in patterning defects.  相似文献   

4.
Tyrosinase‐related protein 1 (Tyrp1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutations in the mouse Tyrp1 gene are associated with brown pelage, and in the human TYRP1 gene with oculocutaneous albinism type 3 (OCA3). In the murine system, Tyrp1 expresses significant dihydroxyindole carboxylic acid oxidase (i.e. DHICA oxidase) activity. However, in humans, TYRP1 is enigmatic in that despite extensive efforts focused on the study of its function, its actual role in the human melanocyte is still unclear. There is mounting evidence demonstrating that in addition to its role in eumelanin synthesis, Tyrp1 is involved in maintaining stability of tyrosinase protein and modulating its catalytic activity. Tyrp1 is also involved in maintenance of melanosome ultrastructure and affects melanocyte proliferation and melanocyte cell death. The current review is an attempt to consolidate our understanding of the role of Tyrp1 in the melanocyte.  相似文献   

5.
The sequence of the tyrosinase (Tyr) gene coding tracts has been obtained for the gorilla (Gorilla gorilla gorilla). The five exons of the gene were sequenced in three gorillas and in a normally pigmented human. The tyrosinase gene has been found to be a very conserved locus with a very low substitution rate. Some nucleotide and amino acid differences were found between the gorilla and human tyrosinase coding sequences. One of the gorillas included in the study is the only known case of albinism in a gorilla (‘Snowflake’). Mutations of the TYR gene lead to Oculocutaneous Albinism type 1 (OCA1), the most common type of albinism in humans (OMIM accession number 203100). The TYR gene encodes the tyrosinase enzyme (E.C. 1.14.18.1), whose activity was found to be completely lacking in ‘Snowflake’, indicating that a mutation in the Tyr gene is the likely cause of his albinism. Nonetheless, no nucleotide changes were detected that could account for the lack of Tyr product or tyrosinase activity in Snowflake, and explanations of these findings are discussed.  相似文献   

6.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

7.
The albino (tyrosinase, Tyrc), brown (tyrosinase-related protein 1, Tyrp1b) and slaty (tyrosinase-related protein 2, tyrp2slt) loci are all involved in the regulation of melanogenesis. Phenotypes of inbred mice mutant at two or more of these loci are not always explicable by simple summation of the established or suspected catalytic functions of the gene products. These phenotypes suggest that relationships among the proteins extend beyond the obvious fact that they catalyze different steps in the same melanogenic pathway, and that they may also interact intimately in such a way that a mutation in one impacts the function of the other(s). Previous studies have attributed catalytic activities to each member of this trio; however, it has been difficult to study the proteins individually, either in vivo or in tissues or cells. Therefore, we undertook to transfect the genes, in revealing combinations, into COS-7 cells (which have no melanogenic apparatus of their own) to clarify the interacting functions of their encoded proteins. Specifically, we attempted to evaluate the effects of Tyrp1 and Tyrp2 proteins on tyrosinase protein. We report evidence that Tyrp1 stabilizes tyrosinase, confirming previous observations, and, in addition, demonstrate that Tyrp1 decreases tyrosinase activity. By contrast, Tyrp2 increases tyrosinase activity by stabilizing the protein. We conclude that both Tyrp1 and Tyrp2, in addition to other catalytic functions they may possess, act together to modulate tyrosinase activity.  相似文献   

8.
We have previously identified three naturally occurring mutations in the medaka fish tyrosinase gene caused by transposable element insertions. Tyrib is one of these, containing the Tol2 element in the promoter region. Its homozygous carriers exhibit a weak oculocutaneous albino phenotype. We report here spontaneous reversion of the albino phenotype to the wild‐type pigmentation, associated with excision of the Tol2 element. The newly arising mutant gene is inherited in the Mendelian fashion. Thus, oculocutaneous albinism is not strictly irreversible, at least in this organism and the results also indicate that the insertion of the Tol2 element is the main, and possibly the only, cause of the ib albinism. Importantly our data also suggest that medaka fish possess an active transposase.  相似文献   

9.
This study represents the first report of a C‐type lectin (ctl) in yellow catfish Tachysurus fulvidraco. The complete sequence of ctl complementary (c)DNA consisted of 685 nucleotides. The open reading frame potentially encoded a protein of 177 amino acids with a calculated molecular mass of c.y 20.204 kDa. The deduced amino‐acid sequence contained a signal peptide and a single carbohydrate recognition domain with four cysteine residues and GlnProAsp (QPD) and TrpAsnAsp (WND) motifs. Ctl showed the highest identity (56.0%) to the predicted lactose binding lectin from channel catfish Ictalurus punctatus. Quantitative real‐time (qrt)‐PCR analysis showed that ctl messenger (m)RNA was constitutively expressed in all examined tissues in normal fish, with high expression in trunk kidney and head kidney, which was increased following Aeromonas hydrophila challenge in a duration‐dependent manner. Purified recombinant Ctl (rCtl) from Escherichia coli BL21 was able to bind and agglutinate Gram‐positive and Gram‐negative bacteria in a calcium‐dependent manner. These results suggested that Ctl might be a C‐type lectin of T. fulvidraco involved in innate immune responses as receptors (PRR).  相似文献   

10.
Cystinuria Type A is a relatively common genetic kidney disease occurring in 1 in 7,000 people worldwide that results from mutation of the cystine transporter rBAT encoded by Slc3a1. We used CRISPR/Cas9 technology to engineer cystinuria Type A mice via genome editing of the C57BL/6NHsd background. These mice are an improvement on currently available models as they are on a coisogenic genetic background and have a single defined mutation. In order to use albinism to track Cas9 activity, we co‐injected gRNAs targeting Slc3a1 and tyrosinase (Tyr) with Cas9 expressing plasmid DNA into mouse embryos. Two different Slc3a1 mutational alleles were derived, with homozygous mice of both demonstrating elevated urinary cystine levels, cystine crystals, and bladder stones. We used whole genome sequencing to evaluate for potential off‐target editing. No off‐target indels were observed for the top 10 predicted off‐targets for Slc3a1 or Tyr. Therefore, we used CRISPR/Cas9 to generate coisogenic albino cystinuria Type A mice that could be used for in vivo imaging, further study, or developing new treatments of cystinuria.  相似文献   

11.
12.
13.
In the medaka fish (Oryzias latipes) many mutants for body color have been isolated. A typical example is the recessive oculocutaneous albino mutant i, which has amelanotic skin and red-colored eyes with no tyrosinase activity. To cast light on the molecular basis of the albino mechanism, we performed Southern blot analysis of genomic DNA from the mutant with an authentic tyrosinase gene probe; the results demonstrate that an extra 1.9 kb fragment is present inside the first exon. The insertion is responsible for the oculocutaneous albinism. About 80 copies of this fragment are present in the genomes of albino-i and wild-type fish; these repeated sequences are here designated Tol1 elements and the particular element found in the tyrosinase gene of albino-i is denoted Tol1-tyr. The nucleotide sequence of Tol1-tyr shows that the fragment (i) carries terminal inverted repeats of 14 bp, and (ii) is flanked by duplicated 8 by segments of the host chromosome. These are properties of DNA-mediated transposable elements. Comparison of the nucleotide sequence of Tol1-tyr with other sequences in DNA databases, with special attention to sequences of transposable elements known to date, did not reveal any similarity. Thus, Tol1 constitutes a hitherto unknown family of DNA transposable elements.  相似文献   

14.
15.
A feral donkey population (Equus asinus), living in the Asinara National Park (an island north‐west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper‐binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across‐population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E?18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource.  相似文献   

16.
Single nucleotide mutations (SNMs) are associated with a variety of human diseases. The CRISPR/Cas9 genome-editing system is expected to be useful as a genetic modification method for production of SNM-induced mice. To investigate whether SNM-induced mice can be generated by zygote microinjection of CRISPR/Cas9 vector and single-stranded DNA (ssDNA) donor, we attempted to produce albino C57BL/6J mice carrying the Tyr gene SNM (G291T) from pigmented C57BL/6J zygotes. We first designed and constructed a CRISPR/Cas9 expression vector for the Tyr gene (px330-Tyr-M). DNA cleavage activity of px330-Tyr-M at the target site of the Tyr gene was confirmed by the EGxxFP system. We also designed an ssDNA donor for homology-directed repair (HDR)-mediated gene modification. The px330-Tyr-M vector and ssDNA donor were co-microinjected into the pronuclei of 224 one-cell-stage embryos derived from C57BL/6J mice. We obtained 60 neonates, 28 of which showed the ocular albinism and absence of coat pigmentation. Genomic sequencing analysis of the albino mice revealed that the target of SNM, G291T in the Tyr gene, occurred in 11 mice and one founder was homozygously mutated. The remaining albino founders without Tyr G291T mutation also possessed biallelic deletion and insertion mutants adjacent to the target site in the Tyr locus. Simple production of albino C57BL/6J mice was provided by C57BL/6J zygote microinjection with px330-Tyr-M DNA vector and mutant ssDNA (G291T in Tyr) donor. A combination of CRISPR/Cas9 vector and optional mutant ssDNA could be expected to efficiently produce novel SNM-induced mouse models for investigating human diseases.  相似文献   

17.
In the albino mutant of an Okinawa strain of Locusta migratoria (L.) (Orthoptera: Acrididae), albinism is caused by the absence of the dark‐colour‐inducing neurohormone (DCIN), which is present in the corpora cardiaca (CC) of normally coloured phenotypes. This study tests whether the absence of DCIN is responsible for albinism in an albino mutant of another locust, Schistocerca gregaria (Forsk.) (Orthoptera: Acrididae). This seemed feasible because a single Mendelian unit controls albinism in both species. However, implantation of CC, or injection of an extract of CC, from albino donors of S. gregaria, induce dark coloration in crowded nymph recipients of the Okinawa albino mutant of L. migratoria, as effectively as do implanted CC, or injections of extract of CC, from normal phenotype donors of S. gregaria. Therefore, DCIN is present in the albino mutant of S. gregaria, and consequently, the albinism in this mutant is not caused by its absence. Implantation of CC, or injection of extracts of CC, from albino donors of S. gregaria to conspecific albino nymphs does not induce darkening. Only extremely high doses of synthetic DCIN injected into albino nymphs of S. gregaria are effective, inducing some darkening. The dose to induce such darkening in albino nymphs of S. gregaria is 50 nmol, ≈ 5 × 106 times higher than that (10 femtomol) needed to induce equivalent darkening in nymphs of the Okinawa albinos of L. migratoria. The results are discussed and some possible explanations of the observed effects outlined.  相似文献   

18.
Tyrp1 and oculocutaneous albinism type 3.   总被引:4,自引:0,他引:4  
Tyrosinase-related protein 1 (Tyrp1) is a melanocyte-specific gene product involved in eumelanin synthesis. Mutations in the mouse Tyrp1 gene are associated with brown pelage, and in the human TYRP1 gene with oculocutaneous albinism type 3 (OCA3). In the murine system, Tyrp1 expresses significant dihydroxyindole carboxylic acid oxidase (i.e. DHICA oxidase) activity. However, in humans, TYRP1 is enigmatic in that despite extensive efforts focused on the study of its function, its actual role in the human melanocyte is still unclear. There is mounting evidence demonstrating that in addition to its role in eumelanin synthesis, Tyrp1 is involved in maintaining stability of tyrosinase protein and modulating its catalytic activity. Tyrp1 is also involved in maintenance of melanosome ultrastructure and affects melanocyte proliferation and melanocyte cell death. The current review is an attempt to consolidate our understanding of the role of Tyrp1 in the melanocyte.  相似文献   

19.
The medaka fish albino mutant, i1 is one of the Tomita collection of medaka pigmentation mutants which exhibits a complete albino phenotype, because of inactivation of the tyrosinase gene due to insertion of a transposable element, Tol‐1. Recently, mosaic black‐pigmented i1 medaka fish have arisen in one of our laboratory breeding populations. Their pigmented cells have been observed in all of the tissues, including the eye and skin, in which melanin is detectable in the wild type. In this study, we analyzed the tyrosinase gene of revertants and showed Tol‐1 to have been precisely excised from the gene, suggesting a causal relationship. Mosaic patterns of pigmentation indicate spontaneous somatic excision of the element from the tyrosinase gene. To our knowledge, this is the first transposable element with somatic excision activity demonstrated phenotypically in vertebrates. The pattern of pigmentation in mosaic revertants indicates frequencies of melanin pigments to be consistent with the numbers of melanophores per unit area of body sites, such as the eyes, head and dorsal trunk.  相似文献   

20.
Congenital defects in retinal pigmentation, as in oculocutaneous albinism Type I (OCA1), where tyrosinase is defective, result in visual abnormalities affecting the retina and pathways into the brain. Transgenic animals expressing a functional tyrosinase gene on an albino genetic background display a correction of all these abnormalities, implicating a functional role for tyrosinase in normal retinal development. To address the function of tyrosinase in the development of the mammalian visual system, we have generated a transgenic mouse model with inducible expression of the tyrosinase gene using the tetracycline (TET‐ON) system. We have produced two types of transgenic mice: first, mice expressing the transactivator rtTA chimeric protein under the control of mouse tyrosinase promoter and its locus control region (LCR), and; second, transgenic mice expressing a mouse tyrosinase cDNA construct driven by a minimal promoter inducible by rtTA in the presence of doxycycline. Inducible experiments have been carried out with selected double transgenic mouse lines. Tyrosinase expression has been induced from early embryo development and its impact assessed with histological and biochemical methods in heterozygous and homozygous double transgenic individuals. We have found an increase of tyrosinase activity in the eyes of induced animals, compared with littermate controls. However, there was significant variability in the activation of this gene, as reported in analogous experiments. In spite of this, we could observe corrected uncrossed chiasmatic pathways, decreased in albinism, in animals induced from their first gestational week. These mice could be instrumental in revealing the role of tyrosinase in mammalian visual development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号